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Introduction

To fit exponential models to TL dose-response curves,
several TL dating research groups are presently using
different fitting routines, some written in-house from
basic mathematical principles (eg Berger et al., 1987b;
Griin and Macdonald, 1989), some purchased
commercially, and some written with the incorpor-
ation of "canned" procedures. Shared data sets may
indicate any significant differences among these
programs. We present here two data sets that can be
used to compare the results from exponential fits.
These data may help independent workers to determine
if their fitting programs actually do what they are
intended to do.

As has been amply shown in the more mature
geochronological disciplines (eg Brooks et al. 1972),
it is extremely important that any such differences be
documented early in the use of these algorithms, so
that the limitations and assumptions underpining each
computation method can be appreciated. Lack of such
an appreciation may lead to undesirable and
unnecessary conflicts in interpretation of TL dating
results.

The fitting method

We wish to compute the intersection point of two
extrapolated exponential curves, as frequently
encountered with the partial bleach method of Wintle
and Huntley (1980). The first data set presented here
was obtained from a glaciolacustrine silt, QNL84-2,
described by Berger, Clague and Huntley (1987a). The
second data set is from a lake sediment of Berger
(unpublished). These data sets have a similar scatter
(standard deviations are 4% and 3% respectively,
calculated from equation 4 of Berger et al., 1987b), but
differ in the percent extrapolation from the applied
dose range.The form of the exponential curves applied
here is

I=I,{1-exp[-(D+Dy)/MDy]}

where I is the TL intensity in photon counts, 1, is the
saturation value of the TL, D is the laboratory applied
dose, -Dy is the extrapolated X axis intercept, and D,
is a fitting parameter. The desired equivalent-dose
value is either +D, if the additive-dose method is used,
or the dose at the intersection of the two curves if the
partial-bleach method is used.

The data are listed in Table 1. The best estimates of
the curve parameters are calculated by three methods:
a) the quasi-liklihood or iterative least-squares method
described by Berger et al. (1987b) [the first data set

(QNL84-2) is shown plotted in Figure 3 of that paper,
but with the use of equal weighting]; b) a weighted
least-squares method programmed for DJH by S. G.
Cowan; and c¢) a weighted least-squares method using a
simplex fitting routine programmed by DJH.

The error estimates in the intersection values are
calculated in two ways; method (i) uses a fast delta
method outlined by Berger et al. (1987b), whereas
method (ii) uses a slow interval or liklihood-ratio
technique (also see Berger et al. 1987b). Specifically,
in (ii) different trial sets of parameters are tested for
statistical "reasonableness" using a liklihood-ratio test,
and the range of values of accepted parameters is then
used to calculate the "error” (or chosen probability
interval) in the intersection.

The weighting factors used in all three methods were
those appropriate to an error model with a constant
percent error in the TL intensity and no error in the
dose variable [For justification see Appendix A of
Berger et al. (1987b)]. In such a weighting scheme,
the variance is proportional to the square of the TL
intensity. It should be noted here for comparison that
the simplex procedure used (only) for the additive-dose
method by Griin and Macdonald (1989) makes no
explicit assumption about the error model and
consequently employs equal weighting.

The weighting scheme of method (a) uses the best
estimate of the TL intensity (ie the intensity calculated
from the fit), whereas method (b) uses the measured
TL intensity. This is a subtle but important
distinction in weighting schemes. This calculated
intensity is required for statistical rigour in the
derivation of the algorithm because the constant
percent emror in the TL signal is not yet known
independently (but see below). However, we show
below that in practice this distinction in weighting
schemes produces no significant difference in results,
for these data sets.

The fitting model (saturating exponential) is assumed
to be a correct representation of the data. A discussion
of the possibility of bias introduced by incorrect
modeling is beyond the scope of this note.

Results

The data for the lake sediment are shown plotted in
figure 1 with the best-fit curves of method (a). The
best estimates of the curve parameters and the inter-
section values, where calculated, are compared in table
2. For all data, each of the estimates derived with
method (a) for the parameters 1,, Dy and D, lies
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Figure 1.

Partial-bleach data and the best-fit weighted, saturating exponential curves for sample STRB87-1, computed using the
method of GWB. With an unequal-weighting scheme such as employed here, high-dose points have less influence than
low-dose points in determining the error in the extrapolation. For this reason the data in Figure 1 are not distributed
evenly over the applied-dose range, but rather successive applied doses have been doubled.

between the two estimates calculated by the other
methods. In all cases the range of these estimates was
much less than their respective uncertainties, which
were typically =3-10%. The intersection values from
methods (a) and (b) also agree closely.

Thus, the exact way in which the fitting is made has
no significant effect on the outcome for these data.
This is reassuring, for Berger et al. (1987b) stated that
with good data sets (those having >10-15 points per
curve, and <5% standard deviation in the intensity
values) most fitting methods should yield the same
results (within error). The methods in table 2 also do
not differ in the computation times for each set of
three-curve parameters [3-5 s for method (a) with
compiled True Basic; 3-4 s for method (b) with
compiled QuickBasic, both using an §0286 CPU @ 8
MHz, without a math coprocessor].

However, the methods do differ dramatically in the
computation time (under the above machine
conditions) of the error in the two-curve intersection,
The delta method ("a" here or "GWB" in table 2)
required only =8 s per intersection value, whereas the
interval method (b) required =420 s (500 trial fittings
were used for the computation). A math coprocessor
will reduce significantly this computation time (for
both methods). For example, with an 8088 CPU @
4.77 MHz using a coprocessor 8087 chip the error
computation time for method (b) was reduced to
=150 s, still far slower than the algorithm for the delta
method run without a coprocessor, even allowing for
the differences in CPUs. This dramatic difference in
time (a factor of 50!) is not suprising because interval

methods for the estimation of intersection errors are
"numerically fierce” (Berger et al., 1987b).

Implications for the error model

We have used the scatter in the data about the
regression curve to obtain an estimate of the constant
percent error. However, ultimately it is desirable to
estimate this error from more specific experiments,
and then to use the observed data scatter to obtain a
chi-squared estimate and thereby to compute a
goodness-of-fit parameter (Berger et al., 1987b). A chi-
squared estimate would provide an assessment of the
probability that the measured scatter of data points is
too large (or too small). The null hypothesis is that
the scatter is due only to a random variation within a
population of possible TL values whose mean is the
best-fit TL value and whose variance is known
independently (the expected error in each data point). A
goodness-of-fit parameter would enable us objectively
to recognise and to reject spurious data points, as
routinely practiced in the more mature isotopic dating
methods (Brooks et al., 1972).

In view of the apparently enormous variety of TL
reponses in nature, even for one mineral type, can a
sufficient knowledge of the variance in each intensity
value ever be obtained? Could replicate TL
measurements from many (100?) discs at a single dose
value for each of several "known" mixes of minerals
provide characteristic (representative) variances
applicable to sediments having similar relative
concentrations of minerals (estimated routinely by
powder X-ray diffraction, for example)?
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Table 1.

Data for samples QNL84-2 and STRB87-1. For the former, 2-4 um grains, for the latter, 4-11 um grains were used. TL
data are photon counts/°C. Doses are in minutes of ®%Co gamma radiation at 1.6 Gy/min (QNL84-2), and in kiloseconds
of 90Sr beta radiation at 90 Gy/ks (STRB87-1).

QNLS84 - 2 STRB87 - 1
Unbleached Bleached Unbleached Bleached
Dose counts Dose counts Dose counts Dose counts
0 38671 0 20766 0 20522.2 0 11814.6
0 40646 0 21393 0 19373.6 0 11587.8
0 38149 0 22493 0 21040.6 0 11708.6
0 35836 120 31290 0 18899.1 1 26645.2
120 65931 120 33779 1 50382.5 1 26445.2
120 67887 240 43221 1 48570.2 1 26368.6
120 66133 240 43450 1 49529.5 2 41487.1
240 82496 240 41427 2 77706.6 2 39125.1
240 86708 480 51804 2 75291.3 2 40582.5
240 86580 480 59555 2 74563.8 4 61532.1
480 110978 480 54013 4 111547.5 4 57023.6
480 113807 960 75748 4 113899.1 8 93015.8
480 114192 960 76613 4 109461.1 8 87907.7
480 109652 8 164564.9 8 87655.2
960 130373 8 151504.2 16 107618.3
960 137789 8 168042.1 16 110394.2
16 204726.5
16 201964.3
16 193457.6
Table 2 Best-fit parameters for the two data sets
QNL84-2 chan. 120 STRB87-1 chan.145
unbleached (16 pts) bleached (13 pts) unbleached (19 pts) bleached (16 pts)
Fit? I, Dy D, Ic Dy D, I Dy Do L Dy D,
GWB 14.280 122.74 392.0 9.64 193.4 762 21.214 0.5832 5.96 12.043 0.6800 6.67
+6.73 +18.8 +0.0478 +0.0226
intersection D, = 86.4 +£10.1 intersection D, = 0.4846 +0.0368
SC 14.246 121.86 389.9 9.67 195.2 773 ~21.153  0.5825 5.95 12.029 0.6823 6.68
+ 0.459 * 6.74 £30.8 *1.02 +19.5 <152 +0.483 +0.0181 +0.25 £0.32010.0226 10.31
intersection De = 85.0?1292_'91 intersection De = 0.4814 *.8_‘387552
S-c 14.297 123.18 393.1 9.63 192.5 757 21.243  0.5835 5.97 12.051 0.6790 6.67
S-m 14.246 121.86 389.9 9.67 195.2 773 21.153 0.5825 5.95 12.029 0.6823 6.68

Values for I, are the photon counts divided by 104

Footnote a)

Four different fitting procedures were used:

1) GWB is the method of Berger et al. (1987b); 2) SC is the method of Cowan in which the variance is proportional to
the square of the measured TL; 3) S-c is a weighted least-squares fit using a simplex routine, in which the variance is
proportional to the square of the calculated TL value (as in method GWB); and 4) S-m, as for (3) but with the variance as
in (2).

Two different methods of error estimation were used: the delta method of Berger et al. (1987b), and the interval method of
Cowan. In method SC each fitting parameter was not allowed to vary by more than 26. Errors are quoted at the 68%
confidence level (16) except for the intersection errors of method SC, which are computed at the 95% level (=26). These
95% confidence estimates were obtained by adding in quadrature the limits due to the unbleached and bleached data, these
being calculated independently. This addition is an approximate, ad hoc method for finding the intersection error for
method SC, but the close agreement with the results of method GWB suggests that this is a valid approximation.
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Summary

For good data and relatively small extrapolations, we
observed no significant difference in results from the
three different fitting routines illustrated here.
However, if computation speed is important, then the
delta method of Berger et al. (1987b) is much faster
than the interval method in calculating the intersection
error.
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