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When using palacodosimetric dating methods, laboratory
reconstruction of the palaeodose poses a key problem.
As a rule, it is solved by the additive dose method, with
extrapolation of the resulting experimental curve
towards intersection with the x-axis. Given an
experimental set of data (1)

(0.5 = 10Dy ix 1, ) o

where Dy is the laboratory additive does, and I(Dp) the
intensity of the TL peak or ESR spectrum signal,
reconstruction of the accumulated dose DN is realised
through a statistical regression analysis. This assumes
optimum choice of the regressional functional
dependence.

Supposing that fading involves a first order thermally
activated process, the solving of the kinetic equations
leads to the following functional shape for the
intensity-dose relation (Hutt and Smirnov, 1982):

I(Dp) =T, [1-e-B(DN+DA)] @

where I, and B are the parameters characterising the
palaco-dosimeter. Thus, (1) and (2) represent a non-
linear three-parameter regression model I, B, Dy are the
parameters to be estimated.

It would be more convenient to perform the regression
analysis rewriting the equation (2) in the following way:

y(x) = a + be*
where x = Dy and y(x) = I(Dy).

From the condition y(-Dy) = 0 we obtain the value of
the accumulated dose:

Dy=gln(-2)
The final model may be expressed as follows
yi=f(8; x))+¢, i=1,..n
where yj is the dependent variable, 8 = (a,b,c} is the

estimated parameter vector, x; is the independent

variable, and € is the random deviation vector. It is also
assumed that x; is error-free and that the random
deviations are of normal distribution and uncorrelated,

ie. cov (&) ~ N(3, 21).

The parameters a, b, ¢ are estimated using the least
squares method, when optimal choice of these
parameters 8 = {a, b ¢} is determined by minimization
of

n
S@b,c; xy) = % (yi-a-bexi)?
i=1
The linearised Newton-Gauss method of minimization
of S(3; x;,y;) is known from the literature (Berger et al,
1987). However, the linearisation procedure has some
disadvantages. In some cases it leads to a slow

convergence of the iterative processes and even to
divergence.

The present paper proposes a straight minimisation
method of S(8; x;,y;) by solving of the corresponding
system of normal equations:
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From the first two equations of the system (3) we have:
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Inserting (4) into the third equation of the system (3) we
obtain the equation for C:

F@,b,&;%,y) = 0 ®)

Non-linear equation (5) can be solved numerically by
means of the Newton-Raphson iteration method:
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Ck = (‘4(-1 - F'(,él(.l) »
where ¢, is the initial approximation and

9F  OF 9a  9F ab
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Calculating the derivatives included in F'(Ck.1) by means
of the system of equations (4) we entirely determine the
calculation scheme of the iterative procedure. The
termination of the iterative process (6) is based on the
natural proximity condition of consequent estimates for
c:

| (é](‘) - (él('-x) I<e

The proposed calculation scheme is realised in the form
of a BASIC programme. The working results of the
programme are presented in the figure, where the
regression dependence is shown by the solid line, and
the experimental data by dots.

A lincarised procedure for the approximate estimation of
error in the accumulated dose can be carried out in the
following way. Denoting with V(y;) the variance of y;:

m .
V(yl) z yu yl 1= 1, JOT

where ¥;

my
=L 3 y-y? i=1 .
m; & )

and m; is the number of repeated measurements of value
yi. Writing the accumulated dose in a Taylor series in

powers of 3y;=y; - ¥i, and confining ourselves to
linear terms:

(afaa of db afac
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f=py=11n (D),

a=a(xpy;), b=bxyyD, ¢=cXpyis
= f(a,b,c) - f@, b, &)

and the derivatives of function f are determined at the
point of

8= (409D (i 30, & (x5, 5D ).

A linearized procedure for the approximation estimate of
error in the accumulated dose can be acrried out by using
the law of propagation of errors (Mandel, 1964):

LDy Dy 2
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where V(Dy) is the variance of Dy and V(y;) is the
variance in the value of y; evaluated using replicate
measurements at the same dose x;.
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