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Introduction ' ‘
The problems of curve fitting in general, and
determining uncertainties in AD in particular, are
recognized as being of significance in ESR and TL
dating, as evidenced by the recurrence of the topic over
recent years (Rendell, 1985; Berger and Huntley, 1986;
Franklin, 1986; Berger et al., 1987; Lyons, 1988; Griin
and MacDonald, 1989; Berger, 1990). This discussion
aims to clarify for non-statisticians some of the issues
which have arisen, to focus attention on potential
problems, and, moreover, to encourage available
techniques to be applied critically rather than naively. It
also draws attention to some of the recent developments
in statistical theory.

Relevant statistical concepts

For simplicity, the following examples use linear
fitting to demonstrate some important concepts, but the
concepts do, of course, apply equally to any other curve.
(i) Leverage.

Points will have a greater or less effect on the fitted
curve depending on their position on the growth curve.
As noted by Franklin (1986), end points are more
influential in determining the position of the line,
particularly for extrapolation, than more central points
(fig. 1; table 1). Depending on whether the extreme
points are "good” or "bad", leverage is either a desirable
or undesirable property: a ‘good’ point is one which has
both a low uncertainty (high precision) and is a true
representation of the physical reality (high accuracy),
while a 'bad’ point has a low precision and/or accuracy
(see also fig. 2 and the discussion below on outliers).

Confidence in the accuracy of the natural non-irradiated
signal intensity should be well-founded. The high
leverage exerted by its position can therefore be justified
provided it also has a high precision. The leverage of
low dose data points is particularly important if the Y-
values have equal variance. It is then highly desirable to
reduce the variance of the natural signal by repeating the
measarement and using the average value in the curve
fitting procedure (sec later, on replication of data
points). If, on the other hand, the data are believed to
have a constant percent error, then the low dose points
are "good" and their leverage is a desirable property; the
data set will be enhanced by increasing the number of
low dose points.

It is unfortunately true that high dose points are
generally more suspect as being further removed from
the environmental situation; repeated measurements will
improve their precision but not their intrinsic accuracy.
Even where the high dose points have a small
uncertainty, a serious problem arises if the model fitted
does not fully represent the underlying physical
behaviour because they will be "bad” points with respect
to the fitted model, and will exercise undesirable
leverage (see fig. 4).

Leverage by high dose points can bte reduced by two
means:

(a) inverse weighting to redress the implicit heavy
weighting they receive by virtue of their position. (Note
that this inverse weighting is in addition to any required
by the unequal variances, or precision, of the data.)
Carrying out a log-transformation to the data in order to
fit a linear instead of an exponential model, as in Apers
et al., (1981), effectively applies a weighting of 1/Yj
and is desirable, rather than to be avoided as suggested in
Griin and MacDonald (1989). Note Griin and Rhodes
(1991) in estimating the optimal distribution of data
points for the dose response curve fitted their models to
log-transformed data, thereby reducing the effect of
leverage by the high dose points. Their conclusions are
therefore only valid for similarly weighted data. If curve
fitting procedures are used which do not inversely
weight the data, leverage by high dose points will be
excessive and lower maximum doses should be used.

(b) provision of an adequate range of intermediate
points. This will reduce the effect of leverage of high
dose points where the model is adequate but the
precision of the data poor. Intermediate points also
indicate whether the model is appropriate (see below).
This discussion should not be taken to imply that high
dose points are not of value. On the contrary, they are
essential to evaluate the appropriateness of the model
and to provide robustness to the extrapolation.

(it) Influence. "

The poor quality of a hxgh leverage point is often
masked because it tends to draw the fitted curve towards
itself (see figs 1 & 2). This phenomenon is known as
influence, and has become a major focus for statisticians
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Figure 1.

Leverage in regression curve fitting. The solid line is the
model line Y=2x+3, fitted to the infilled circles. Where
an extreme point is "in error” (dashed line, fitted to the
crosses), the regression line shows pronounced leverage
with both AD and slope being significantly affected.
Because an extreme point draws the line towards itself
(influence), its poor quality is not necessarily obvious
and it may not have a high residual. When a central point
is in error, the effect on AD and slope is reduced,
involving a sub-parallel shift instead of leverage (dotted
line fitted to open circles). The effects of the same
absolute or percentage change on the lowest point is
given in table 1.

in the last decade (Cook and Weisberg, 1982). An
important consequence of influence is the difficulty of
determining whether high leverage points are 'good’ and
hence whether the associated estimates are biased.

A plot of the fitted curve together with the data points
serves only as a first visual test of the goodness of fit.
Because of influence, an apparently good fit is, in itself,
no guarantee of the quality of any particular data point
nor that the best curve has been fitted. Mathematically,
this means that a high or low residual cannot be used to
identify a poor or high quality data point, respectively
(table 2). Any attempt to 'improve' a data set by
eliminating high residual point(s) is at best misguided
and potentially disastrous. Thus, tests such as
Chauvenet's test for identifying outlying data points
(Misaqi, 1975) are not sufficient grounds for rejecting
high leverage data points, as these tests essentially
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Figure 2.

Qutliers produced by jackknifing reflect the quality of the
associated jackknifed (omitted) point: when a poor
quality high leverage point is omitted a high quality
outlier is produced and vice versa. The data points have
been produced for the model line (dashed line,

=30+0.5x, AD=60) with randomly generated errors, s=5,
assigned to the Y values. To demonstrate the effect of
leverage on a scale which can be graphically shown, the
high leverage point has been deliberately assigned a
value which places it 66 from the model line (in fact, if
such a poimt arose experimentally and its deviation from
the line were known, it would no longer be regarded as a
member of the data set). However, note that the
regression line to all data points (solid line) passes close
to the poor quality point by reason of its influence; the
quality of a point cannot be determined by visual
examination nor by residuals (table 2) but must be
independently known. Omitting the poor quality high
leverage point in the jackknifing procedure produces an
outlier which lies too close to the model line to be
distinguished on this scale. The dotted lines are the
Jackknife fits when the other points are omitted and,
although closely grouped, give poor estimates of the
model parameters.

g

depend on some form of evaluation of residuals. The
quality of a high leverage data point should be assessed
independently of its relationship with the fitted curve,
for example, by its variance (which can then be included
as a weighting factor) or other experimental evidence.

Assessing model aptitude

The choice of model is of importance in any application
involving extrapolation. Models which are satisfactory
for interpolation (such as high order polynomials) may
be completely unsatisfactory for extrapolation. It is not
intended here to discuss the appropriateness of any
particular model, but simply to identify some relevant
statistical procedures and pitfalls. Note that Readhead
(1984, 1988) and Prescott (1983) propose a regenerative
method of estimating AD in TL dating in which the
curve fitting utilizes interpolation rather than

s
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extrapolation; it is therefore much less vulnerable to
incorrect model choice.

The phenomenon of leverage can be used informally to
test the appropriateness of a model. If the AD estimated
by the model shows a systematic trend as additional
higher value points are progressively added to the
calculation, then the model is suspect, and the effect of
leverage may be extremely serious. (This technique is
used by Griin (1990) to demonstrate the inapprop-
riateness of the simple saturating exponential model to
describe the growth curve of the g=2.0007 centre in
corals.)

Just as a low residual at a single point is not necessarily
an indicator of a 'good’ point, neither is a low residual
sum of squares (SSE) an indicator of a 'good’ model, as
is sometimes assumed. Introducing more parameters
into a model will always reduce the residual sum of
squares, because SSE is an estimate of the variation in
the data left unexplained by the model - the more
complex the model, the closer the fit and the ‘better” the
correspondence. A better indicator of the fit of a model
is the mean sum of squares (MSE) , as this allows both
for the number of parameters estimated and the number
of data points:

MSE = SSE/(n-p)

where, '
SSE =residual sum of squares (error sum of squares)
n = no of data points

P = no of parameters fitted (incl. intercept term)

An equally useful indicator is the root mean square error,
or the standard error of estimate (RMS), which is
simply the square root of MSE but has the advantage
that it is in the same units as the dependent variable.

The most common method to assess model adequacy,
which takes into account all of the above, is to consider

the ratio of MSR/MSE, where:
MSR = SSR/(p-1)
where,
SSR  =regression sum of squares
MSE = mean sum of squares, as above.

This ratio has an F distribution, F(p-1, n-p). Thus the
F-statistic (or the associated probability of rejection) is a
useful measure for comparison of models. The Student's
t-test is the corresponding test for the linear case.

Estimation of uncertainty in AD
The estimate of uncertainty in AD is a particularly
thorny problem. Because the data for experimentally
determined additive growth curves may not satisfy some
of the basic statistical assumptions, caution is needed in
applying standard statistical techniques.

PO R AT DR
Four methods have been 'Stiigested in the ESR ‘and TL
literature: regressing x on Y (Rendell, 1985); quasi-
likelihood techniques (Berger et al., 1987); constrained
linear regression (Lyons, 1988); and jackknifed
regression (Griin and MacDonald, 1989). Which method
is considered the most appropriate will depend on the
nature of the data.
The first of these methods, regressing x on Y,
contravenes the basic assumption that the error is
associated only with the dependent variable and that the
independent variable is error-free. As a result the
‘regression may be so greatly changed as to be
meaningless' (Williams, cited in Rendell, 1985). While
quasi-likelihood methods are statistically established
techniques and their use is to be recommended where
possible, it is also true that they are generally
‘computationally demanding' (Seber, 1977) and may
place unrealistic demands on both the quantity and
quality of the data, requiring 'at least 15 points (Berger
et al., 1987), each with an uncertainty of <5%): meeting
these requirements must be carefully assessed.
Constrained linear regression (Lyons, 1988), which
forces the regression line to pass through the natural
signal intensity, does not have these restrictions on data
quality and quantity but requires the natural signal to be
extremely well-defined. It is only applicable to a linear
model and thus its usefulness is limited. Re-sampling
techniques such as jackknifing (see below), may be
applied to any model to obtain uncertainty estimates:
their validity with respect to regression is, however, the
topic of debate because two basic statistical assumptions
may not be satisfied by regression data:

(i) independent random data points. This is untrue for
additive growth curve data, where the independent
variable (added irradiation) is not randomly selected.

(ii) equal variance, i.c. the total absolute experimental
uncertainty is the same for each point regardless of its
magnitude. While this assumption is supported by some
(Franklin, 1986; Scott and Sanderson, 1988), others
would regard a constant percentage error for each data
point as more reasonable (Berger, 1984; 1987).

. . A
Re-sampling techniques
Re-sampling techniques require constructing subsets of
data from the initial complete data set and noting how
the parameter of interest varies with the different
subsets. For example, in 'simple delete-one jackknifing’,
as used in the program FITT supplied by Griin and
MacDonald, the subsets of the data are obtained by
omitting each data point in turn from the total set. The
uncertainty in AD is calculated from the resulting
distribution of ADj. (While this description is
conceptually apt, it should be noted that the
mathematical theory and execution is more complex.)

Reasonably comprehensible descriptions of re-sampling
techniques for the general user have been written by
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Miller (1974) and Efron (1982). More sophisticated
treatments can be found in journals such as the Annals
of Statistics and the Journal of the American Statistical
Association. In particular, Vol 14 No. 4, Annals of
Statistics, contains a substantive invited paper by Wu
(1986), including a comprehensive reference list, and a
series of related discussion papers.

Re-sampling techniques such as jackknifing have wide
application in experimental analysis. However, most of
the theoretical work on re-sampling is based on the two
assumptions outlined above and thus is not necessarily
valid for regression (Wu, 1986; Carroll and Rupert,
1986; Hinkley, 1977). The application of resampling
techniques to regression data is currently the subject of
much debate in statistical research (see Annals of
Statistics, Vol.14, No. 4) and 'more work is needed and
is being done in this area' (Shao, 1986). Points of
concern are potential bias in the parameter estimates,
possibly unduly inflated (conservative) or skew
estimates of the associated uncertainties (Hall, 1986),
underestimation of uncertainties (Duncan, 1978, cited in

Table 1.
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Seber and Wild, 1989), and the disproportionate effect of
outlying data points on the results. Re-sampling
techniques can also be computationally demanding, and
methods are being developed to bring the computing
requirements within manageable limits for large data
sets (not a problem with TL and ESR applications!) It
should be remembered that statisticians almost always
work with very large data sets, which tends to minimize
the problems mentioned above. For the small data sets
used in AD determinations, the computational demands
are modest but these problems may be of much greater
practical significance (Hinkley, 1977).

Developments in re-sampling techniques for estimating
uncertainties in regression applications are significant.
Wu (1986) suggests the use of a 'weighted sharpened
delete-n jackknife' to cope with some of the problems
raised by the the nature of regression data and non-
satisfaction of the above assumptions. In this method,
instead of only one point being omitted to form each

Wt
N

Leverage due to position: effects on AD are much greater for extreme points. Model line is Y = 2x + 3. The second set of
figures for the central and bottom points have the same percentage deviation from the true Y value as the top point.

"Bad" pt Change in y y-intercept  Slope AD % change in AD
model none 0 3 2 1.5 %o
top (8, 16) -3 3.63 1.63 2.23 +49
middle . 8) -3 2.73 1.93 1.42 -5
(4,9.26) 16% 2.84 1.96 1.45 -3
bottom ©, 0) -3 1.83 2.23 0.82 -45
+ (0,2.53) 16% 2.82 2.04 1.38 -8

Table 2.

Residuals are poor indicators of data quality because of influence of extreme points. The model and data are as in fig. 2. .
ADj are the jackknife estimates omitting the ith point. AD* is calculated from the average slope and the average Y-’
intercept from the jackknifed slope and intercept estimates. a) extreme high leverage point , poor quality but with a low
residual, ADyqq is an outlier and the closest estimate of AD, AD* is a very poor estimate of AD b) extreme point is very
high quality (lies on the model line), ADygg is an outlier and the worst estimate of AD. Note that, in the absence of
information on the quality of a high leverage point, the best estimate of AD will be obtained by fitting the data to all the
points, suitably weighted to allow for leverage, as discussed in the section on the Application of the delete-one jackknife.
Note also that the jackknife estimates of the uncertainty in AD given here, are substantially higher than those which
would be calculated by the standard formula for independent data set because the resampled data sets used in jackknifing are

not independent.

x 0 10 20 50 100 200 b

P 3.5 5.7 7.5 4.0 2.8 30.0
residual  0.66 -2.98 8.79 0.99 -12.97 5.50
AD; 39.7 42.5 34.6 39.8 41.1 58.9

AD 10de) =600 ADg =402  AD,, =427 +170 AD* =353
& -3.5 5.7 7.5 4.0 -2.8 0
residual 3.21 -6.08 2.54 3.52 5.85 -1.99
AD; 55.7 66.2 57.3 61.4 59.4 51.7
[
ADpode) = 600 ADgy =596  AD,, =58.7 £ 10.1 AD* = 585
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subset as in the delete-one jackknife, several (n) points
selected at random are omitted. This increases the
independence of the subsets and the estimated
experimental uncertainty is then largely independent of
the underlying theoretical distributions. It should also be
readily extendable to non-linear situations (Rao and
Prasad, 1986). The weighted sharpened delete-n jack-
knife is conceptually equivalent to the common practice
in physics and chemistry, where the uncertainty of the
estimate of a parameter is calculated from repeated
determinations (i.e. from a number of independent data
sets) in accordance with the central limit theorem.

Although the relative merits of the various methods of
jackknifing and other re-sampling techniques are still a
matter for discussion, progress is substantial and very
promising (Shao and Wu, 1989).

Application of the delete-one jackknife

Meanwhile, even though the application of the simple
delete-one jackknife to regression problems is not
universally accepted by the theoreticians, it may well be

argued that 'something is better than nothing'.

Certainly, the availability and convenience of the FITT
program for simple delete-one jackknifing, supplied by
Griin and MacDonald, is a strong argument for its use.
However, bearing in mind the concepts discussed above,
and the emphatic comment by Wu (1986) that ‘routine
and blind use of any re-sampling technique is
problematic’, several points arise:

1) Treatment of outliers.

The problem of leverage may lead to outliers, or values
which are substantially different to most of the values,
in the set of AD; generated and hence to highly dubious
estimates of both AD and the uncertainty in AD.
Depending on the quality of the point omitted to obtain
the outlying estimate, the outlier will represent either
the best (poor quality point omitted) or the worst (high
quality point omitted) estimate of AD (fig. 2 & table
2). It is essential to evaluate the quality of the outlier-
producing point independently (NB it cannot be assessed
simply from examination of the residual) in order to
interpret the jackknife data correctly. A point must not
be discarded simply because it produces an outlier AD
estimate unless its exclusion is justified on other
grounds. The outlying estimate may be the closest
estimate of AD if it arises from excluding a poor quality
high leverage point.

The above comments are not an objection to identifying
and, possibly, eliminating outliers, nor to the
sometimes large estimates of uncertainty that may arise
if the data set itself contains outliers, as was mistakenly

interpreted by Griin (1990). Rather, we are concerned

that outliers in the resulting estimates of AD and curve
parameters should be closely scrutinized for their
significance.
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Figure 3.
Estimation of AD from jackknife estimates and the effect
of duplicating points (from Griin and MacDonald, 1989;
the labelling of the 3 lines has been corrected, with
permission). The solid curve is the best fit to all points.
The parameters obtained by averaging the estimates from
Jackknifing for each curve parameter may give rise to a
curve with little correspondence to the data points
(dashed curve). The dotted curve is the result of
averaging the estimates from jackknifing after adding
one additional (assumed) point at 1 kGy. Consrary to
Grin and MacDonald’s statement, this “improvement” is
not due to the “(better) choice of radiation steps”, but to
the forced inclusion of the 1 kGy value, by duplication,
in all the jackknifed estimates i.e. by the elimination of
the corresponding ouilier.
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Model aptitude cannot be tested by the effect of
duplication on jackknife uncertainty estimates. The data
is saturating exponential but the fitted model is linear;
the extreme point gives rise to an outlier. Duplicating
this point (or including another high value point close to
it) effectively prevents its elimination and will reduce s,p
without improving the fit; s, from jackknifing cannot
be used to determine model fit.
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The vulnerability of the jack-knife technique to outliers
in the parameter estimates and the effective weighting it
gives to extreme points when extrapolation is being
used, mean that it must be applied with caution, and due
consideration given to appropriate weighting factors. Its
use should also be restricted to high quality data if the
resulting estimates of uncertainty are to be realistic.

2) Estimation of AD.

The best estimate of the curve parameters should be
calculated by fitting all the data. It should not be derived
by numerically averaging the estimates of the curve
parameters obtained in the jackknifing procedure (e.g
average Y-intercept/average slope for a linear model), as
these variables are not independent. Nor should it be
obtained from the average of the AD; from jackknifing
(table 2) because these AD;j are not of equal value due to
leverage effects. For example, a poor quality high
leverage point may lead to severe bias in the estimate of
AD, because it will give an AD significantly different
from the true estimate. This will have a disproportionate
effect on the average value of AD, both because of the
size of the discrepancy and because it is inherently a
poor quality estimate and therefore should not receive
equal weighting in the averaging process (Carroll and
Rupert, 1986).

If either of these averaging methods is used, the AD
estimate may not only be biased but the resulting curve
an obviously poor fit, as shown in fig. 3 from Griin and
MacDonald (1989). More sophisticated averaging
techniques have been proposed to deal with these
difficulties: Hinkley (1977) and Siminoff and Tsai
(1986) propose using 'pseudovalues’ to downweight
high leverage data when calculating the jackknifed
estimates. These effectively weight the data to allow for
leverage effects when each jackknifed estimate is
calculated, thus reducing the bias. The problem is more
complex when the data points have unequal variances
(Freedman, 1986), as eliminating a high variance point
yields an inherently 'better' estimate than one where a
low variance point has been omitted, but should be
amenable to the same technique of pseudovalues using
the Fisher information matrix (Wu, 1986).

3) Replication and distribution of data points.

The magnitude of the uncertainty estimated by
jackknifing depends heavily on the distribution of the
data points. Replication of points will reduce the
estimate markedly, and spuriously, as it effectively
prevents the elimination of the replicated data point in
the jackknifing procedure (fig. 4). Instead of including
any replications individually when jackknifing is used to
estimate uncertainty in AD, they should be averaged and
the resulting single point given an increased weighting
because of its reduced uncertainty. Note that if other
techniques, such as quasi-likelihood methods, are used,
averaging of replicated points is not required. Indeed,
except when resampling techniques are used, maximum

Ancient TL, vol. 10 No3 1992

value is obtained from the data if all points are included
in the curve fitting process individually

Any apparent reduction in AD uncertainty as estimated
due to duplicating data will be largely spurious and the
AD estimate itself will be biased. The ‘demonstration’ in
Griin and MacDonald (1989) of dramatically improved
uncertainty limits and "better' curve fitting as a result of
duplication is incorrect and seriously misleading (fig. 3).
On the contrary, the example demonstrates, not that
there has been a 'wrong choice of radiation steps’, but
that a good distribution of points over the whole range
of the independent variable is vital to enable the validity
of the model to be assessed. Even without duplication at
precisely the same dose, a low AD uncertainty will be
estimated by jackknifing if there is more than one high
leverage point with a high precision, no matter how
inappropriate the model is. The simple delete-one

jackknife itself cannot be used to assess the validity ofa

model, as even a very poor model will give a small
uncertainty in AD provided the experimental uncertainty
on each point is low: (A test for model aptitude has
been given in a previous section.)

t
Cautionary measures
The following procedures should help to avoid some of
the serious pitfalls in curve fitting and error estimation
outlined above.

(i) A sufficient number of data points should be
determined to allow for unusual points to be identified
and the response curve to be well-defined. It would be
unlikely that reliable results would be obtained with
fewer than 8-10 observations (3-4 per parameter fitted),
although this is very much dependent on the complexity

of the model, the quality of the data and the method of

analysis employed.

(i) Leverage should be taken into account by -
concentrating data in the lower dose range, with some -
points at higher doses to give an indication of how the -

dose response curve behaves at higher levels. This
concentration is particularly effective if the data has a

. strong linear component at lower doses but departs from
linearity at higher doses, as for example in the -
linear/exponential model proposed by Levy (1989). :
Where the model is well defined, precise high dose data -

is extremely valuable, but where the model is less
reliably known, even very precise high dose data should
be downweighted to counteract the effects of leverage
(Fox et al., 1980).

(iii) Allowance should be made for unequal variarie in *

the Y-values, if it is considered significant. For
example, the data can be weighted by the reciprocal of
the variance for each data point, if it is known.
Transforming the data by taking the log of the dependent
variable and fitting a linear regression to the transformed
data is mathematically equivalent to weighting an
exponential data set for a constant percent error (de
Levie, 1986).
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(iv) The natural signal intensity should be evaluated as
reliably as possible and weighted heavily in the curve
fitting, as this point is fundamental to the concept of
ESR and TL dating.

(v) The data should be checked for general form. Only if
the data are linear (see Franklin, 1986) and natural signal
intensity sufficiently well defined, can constrained
weighted linear regression be used. The importance of
the choice of model is reinforced by the example given
in Griin and MacDonald (1989), who caution that
apparently linear data may give very different results
when fitted with an exponentially saturating curve,
although the difference is probably not so severe if a
combined linear/exponential curve is fitted.

(vi) If the data are of sufficiently high quality and
quantity (>15 points, <5% uncertainty), quasi-likelihood
methods as described by Berger e al. (1987), may be
used to fit either linear or non-linear models.

(vii) If the data are non-linear and its quality/quantity
deficient for likelihood techniques, an estimate of the
uncertainty in AD can be obtained by the jackknife
technique. Its interpretation should include a careful
consideration of the potential problems of influence and
leverage, and appropriate weighting to minimize their
effects, particularly if the data have unequal variances. If
jackknifing is used to estimate the uncertainty in AD,
averaged values should be used for replicated points, and
the variance in the mean value be included in the
weighting. The jackknifed ADj estimates should be
checked for outliers, their significance assessed and any
implications for calculating the best estimate considesed.
AD itself should be derived from the best fit to all data
points and not by averaging the jackknife estimates of
parameters.

(viii) In all curve fitting, particularly jackkmifing, the
data should be plotted along with their fitted curve to
check for oddities, bearing in mind the possible effects
of influence. Whether a significantly better fit has been
achieved by using a model with more parameters can be
checked by using the tests outlined above in the section
on assessing model aptitude. It should be noted that
even if a more complex model fits the curve more
closely, extrapolation may still not be valid (e.g. if
polynomials are fitted): for extrapolation, in contrast to
interpolation, it is essential that the curve form
expresses the underlying physical properties.

It is important to be pragmatic about the power of the
techniques chosen: there are times when the quality of
data may not justify the use of sophisticated techniques
whose basic assumptions may not be satisfied, and less
demanding techniques, even visual fitting, may be
appropriate. The major source of systematic error is still
likely to be the use of an incorrect model, and this
cannot be detected by routine uncertainty calculations.
Thus, at this stage, major progress in improving the
reliability and accuracy of ESR and TL ages estimates is

" P TR

most likely to arise from theoretical advances in our
knowledge of the appropriate curve forms to use.
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