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Introduction

For some years there has been much effort in improving
exponential regression techniques for extrapolating the
ESR/TL dose response curves (henceforth DRC) when
using the additive technique, e.g., Mejdahl (1985),
Debenham (1985), Berger et al. (1987), Poljakov and
Hiitt, (1990). However, at the same time it was
recognized that in many cases the dose response curve
were not strictly of the saturating exponential form
neither in TL (e.g., comments of McKeever in Bulur
and Ozer, 1992) nor in ESR (Griin, 1991). As a result
all errors evaluated from applying an exponential
regression are underestimated (see Griin and Rhodes,
1991). Some specific solutions have been proposed,
e.g., in the case where the dose response curve shows an
exponential domain at low doses and a linear domain at
higher doses (Berger, 1990; Griin, 1990). However,
several mathematical functions would be necessary for
extrapolating the various types of dose response curves
that are experimentally encountered. For some years to
come those functions will remain no more than
acceptable approximations, because the basic
phenomena are still partly unknown, are complex and
the associated parameters are widely scattered - even for a
given variety of minerals.

This paper deals with the case where the dose response
curve of minerals which have been zeroed by heat in the
past, such as volcanic materials, seem to be a single
saturating exponential function at first glance. This kind
of shape is very common, although the studied dose-
range must be limited to low doses in many cases
because changes in the shape occur when the dose is
increased above a certain limit (e.g. a 'second rise").

The present work was intended to test a technique of
regression in which account is taken of the regenerated
dose response curve: the basic assumption is that the

dose response curve obtained with a laboratory reset
sample (for brevity referred to here as the 2nd DRC) is
often a close approximation to the additive dose
response curve (1st DRC), with, in most cases,
allowance for a scaling factor. This assumption of
proportionality between the two growth curves had been
already used by Valladas and Gillot (1978) in the
normalization technique. Consequently, the 1st DRC
will be fitted with a function in which some parameters
derive from the fitting of the 2nd DRC. In the present
work, a single saturating exponential function has been
used in the fitting procedure, because it is commonly
applied and has a realistic physical meaning but the
principle can be extended to other, more developed
functions. The technique (hereafter denoted 2+1) is
illustrated by 2 simulations on test data from (i) a
calculated curve, which seems to be exponential but is
not strictly exponential and (ii) an experimental growth
curve. An experimental application to dating will be
presented in a forthcoming paper.

The test data
The simulated dose response curve.
The calculated test curve was adopted from Li (1991);
which consists of two overlying saturating exponential
functions,

I; =443 { 1 - exp(-0.00268D)}

I, =443 { 1 - exp( -0.0134D)}
where, D(Gy) is the radiation dose and I (a.u.) is the
TL/ESR intensity.

A curve of this type may be proposed when two
trapping processes occur simultancously at one defect
site or when two different minerals are mixed. In order
to study various shapes of dose response curves in a
variety of situations, three combinations of the two
functions were used, namely 0.251;+I5, I;+I> and
1;+0.251,, and referred to here as 0.25/1, 1/1 and 1/0.25
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Figure 1.
Example of calculated test curves. The test function is a
combination of I; and I, (I =I} + I, in the present case)
where,

I} =443 {1 - exp(-0.00268D)}

Iy =443 {1 - exp(-0.0134D)}
The shift of the test curve along the dose axis allows to
simulate different preset palaeodoses, i.e., 50, 100, 200
and 300 Gy (as shown).

Figure 2.

Test curve 11+0.251,; preset palaeodose (PP): 200Gy.
Black boxes: 2nd DRC test points; open boxes: st
DRC test points; no errors on the data; Pg;: examples
of extrapolations on 1st DRC only; Py, ;: examples of
extrapolations with the 2+1 technique. Solid lines
represents the theoretical growth-curve.

Figure 3.
Regression on a simulated test curve 1/1, with 5%
standard deviations on intensities; preset palaeodose
(PP): 300 Gy, maximal dose taken into account on 1st
DRC: 960 Gy. Pg;, Py,;: as in fig.2, the most
" probable value (the value obtained without errors). EF':
exponential fit on 2nd DRC, using mean points. Dashed
lines: ten first curves calculated with §1; solid lines: ten
first calculated curves with 2+1.
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(table 1); the preset palacodose was varied from 50 to
300 Gy (fig. 1). Simulated experimental points were
fixed at doses of 0, 40, 80, 160, 320, 640, 800, 960 and
1120 Gy. Several ranges of doses were used for curve
fitting (see bottom of table 1). For every case, the range
of doses for the second growth was taken in accordance
with the usual choice, i.e., roughly equal to the total
dose range of the first dose response curve (i.e. estimated
palacodose + maximum added dose).

The experimental dose response curve

The experimental set of data points was taken from the
measured red TL peak (~620 nm, at 380 °C) of quartz
grains annealed (at 400 °C for 15h) and afterwards
irradiated in the laboratory. The standard deviation of the
intensities was evaluated from repeated measurements
(8-10 for each dose). The curve of peak height vs dose
was used as a 2nd DRC (as in fact it is) and also as a 1st
DRC by a shift along the dose axis of 145 or 290 Gy
(see table 2). Thus, the palacodose obtained by
regression of the 1st DRC should be equal to the
amount of dose shift, i.e. 145 or 290 Gy (fig.5).

In both cases, the two curves (1st and 2nd DRC) were
adjusted to the same scale, so that the curves could be
superimposed on each other by a shift equivalent to the
palaeodose along the dose axis, i.e., no sensitization
was simulated. The results given here would not be
altered by a change in sensitivity because the regression
technique presented below is able to take it into account.

The 2+1 regression technique
As a first step, the 2nd DRC is fitted using the function

I=Tymax [1- exp(—D/Do) ] (1)

where,
Iimax is the maximum intensity, D the dose and D the

characteristic saturation dose. In the second step, the 1st
growth is fitted using the function

I'=Tomax [1 - exp-{(D - De)/D,} ] @

where, D, is the palacodose to be evaluated; Inp,.yx is
usually different from Iy, because of sensitization

after annealing.

The coefficients Itmax, Iomax and Dy are obtained by
minimization - by a simple and rapid method of
successive approximations - of the sum of the squares of
the relative differences between the experimental points
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and the fitting curve. The use of relative differences is
justified when the relative uncertainty AI/I (I=TL or
ESR intensity) is constant, combined with a significant
variation of amplitude of I in the given dose range
(Nougier, 1985). Minimization of the sum of square
absolute differences would give too much importance to
the largest intensities. That is, the fitting curve would
lie closer (relatively) to the high intensity points than to
the lower ones; this effect is avoided by the use of the
relative differences.

In our laboratory, the standard deviation of the calculated
palacodose (s.d.) is obtained by use of a Monte-Carlo
technique (Pilleyre, 1991). Assuming that the error on
the dose is negligible, the uncertainty of the intensity is
estimated. The process of curve fitting is then repeated
many times (e.g., 100 times) by randomly generating
data sets that show a Gaussian distribution around the
mean intensities of the experimental data set. The s.d. of
the palacodose is then derived from the distribution of
the calculated palacodoses. The palaeodose itself is
calculated with the set of points corresponding to the
mean intensities. This most probable palacodose is
generally not equal to the mean of the palaeodoses
calculated with the Monte-Carlo technique. A Monte
Carlo technique was also adopted by Griin and Rhodes
(1991).

In the present work, no uncertainties were taken into
account in the first (theoretical) simulation ( but in one
case specified below), the points belonging to the
calculated test curve; standard deviations (one sigma)
were used in the second (experimental) simulation.

Results

Figure 2 illustrates the regressions and table 1 lists the
results. As already specified, different regressions were
calculated by varying the maximum dose (sec table 1). It
can be observed that very few extrapolations yield the
correct palacodose but, in nearly all cases, the
exponential regressions on 1st DRC only (henceforth
§1) gave worse results than the 2+1 technique . On the
other hand, the lower the maximum dose taken into
account, the better the results. This effect is more
marked on SI extrapolations, where increasing the
maximum dose has a strong influence on the calculated
palacodose. At the same time, the effect of the
palaeodose value can be observed (table 1): when the test
palacodose for a given test curve is higher, the 1st DRC
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Figure4.

Distribution of the palaeodoses calculated with the
Monte-Carlo technique (200 calculations); maximal dose
taken into account: 960 Gy; error limits of 5% on
intensities (table 1). Preset palaeodose (underlined): 300
Gy, P, Py, 1: most probable palaeodoses (= palaeodose
obtained without errors on the data), with the two
techniques of regression , i.e. 2+1 (upper figure) and S1
(lower figure).

Figure 5.

Experimental test data: red TL of quartz grains annealed
in the laboratory and irradiated with a 137Cs gamma
source; red filter RG 610 Schott, 5 °Cis heating rate.
Errors corresponding to one s.d. derive from several
measurements for every dose. 1: lst DRC, test
palaeodose: 145 Gy; 2: 2nd DRC. Full lines:
exponential fits (derived from 1st DRC).

lies closer to the saturating domain and the single fit $1
is less relevant, although it might lie very near to the

" test points and seem, in this part of the curve, very good
from a mathematical point of view.

It was verified that, when the test curve is purely
exponential (I or I; alone), both techniques give correct

results.

The drawback with the above calculations is the lack of
consideration of experimental errors, leading to
situations far from actuality, especially for the highest
palacodoses. An attempt was made to simulate such
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situations by use of Monte Carlo calculations, after an
arbitrary standard deviation of 5% had been applied to
the intensities of the test points. A particularly critical
case was selected by taking the highest palacodose
(300Gy) and the 1/1 combination (fig.3).

Afterwards, the histograms of calculated palacodoses
with 200 draws were plotted (fig.4). It can be seen that
the §1 procedure gives an erroneous palacodose with a
very broad distribution, ranging from 90 to 2790 Gy.
Moreover, the distribution is clearly non-Gaussian and
asymmetric - as already mentioned by Griin and Rhodes
(1991) - making the mean value and the s.d. given at the
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bottom of table 1 almost meaningless. On the contrary,
an approximately correct palacodose value can be
obtained with the 2+ technique, in spite of the very
unfavourable conditions. The corresponding probability
distribution being not far from normal, the s.d. can be
considered as realistic. Comparison of the mean results
from the Monte Carlo calculations (in square brackets in
the tables) and the most probable value (without
brackets) gives a rough indication of the asymmetry of
the palaeodose distribution.
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Table 2 lists the palacodose results obtained with the
experimental test data, with the Monte Carlo calculation
(100 draws). As above, the results obtained with the
2+1 technique are, in most cases, closer to the test
palacodose than with a single fit S1. The s.d. is larger
with the latter fit but often not large enough to allow
compatibility between the calculated and the preset
palaeodoses. In this simulation, the mean calculated
palacodose is, in all cases, not significantly different
from the most probable one.

Table 1.

Summary of the palaeodoses calculated with two different regression techniques; the ratio of the calculated and the preset
palaeodose is given. SI: exponential fitting on 1st growth only, with minimization of the sum of the square relative
differences between the fitting curve and the test points. 2+1: exponential fitting of 1st growth with use of the 2nd
growth parameter ( see text). 3 different combinations of the functions I; and I, were used for the calculated test curve.
The dose points taken into account are listed at the top of the table; for the 1st growth, those are the natural signal and
the natural +6, +5, +4 or +3 added doses; for the 2nd growth, the zero point and 7, 6, 5 or 4 different doses.

The mean calculated palacodoses obtained with the Monte-Carlo technique (100 draws) are given in square parentheses in
the lower part of the table, where a s.d. of 5% has been taken into account for the intensities. The palaeodoses calculated
with the mean points are given in the preceding row(s).

Test curve Preset
combination Palacodose Calculated Palaeodose / Presei Palacodose

Ii/I; (Gy) S.1 2+1 S.1 2+1 S.1 2+1 S.1 2+1
0.25/1 1.17 1.06 1.13 1.06 1.07 1.06 1.03
1/1 50 1.36 1.13 1.29 1.13 1.16 1.14 1.08 1.12
1/0.25 1.28 1.13 1.23 1.13 1.15 1.14 1.08
0.25/1 1.35 1.00 1.27 1.01 1.15 1.03 1.07 1.03
1/1 100 1.57 1.02 1.47 1.03 1.27 1.07 1.14 1.07
1/0.25 1.32 1.03 1.28 1.03 1.20 1.06 1.13 1.97
0.25/1 1.88 0.87 1.71 0.89 1.42 0.93 123 0.96
1/1 200 1.74 0.84 1.67 0.86 1.48 0.90 1.32 0.94
1/0.25 1.30 0.90 1.28 0.91 1.23 5.94 1.19 0.96
0.25/1 2.16 0.75 2.03 0.77 1.70 0.81 1.39 0
1/1 300 1.70 0.72 1.66 0.74 1.60 0.78 1.54 0.81
1/0.25 1.22 0.84 1.26 0.83 1.24 0.86 1.25 0
1/1 300 1.70 0.72 1.60 0.78

+1.86 +0.11 +2.40 +0.22

with 5% s.d [2.55]  [0.74] [2.40]  [0.81]

Radiation 1st growth 0, 40, 80, 160, 0, 40, 80, 160, 0, 40, 80, 160, 0, 40, 80, 160

dose 320, 640, 960 320, 640 320

points

(Gy) 2nd growth 0, 80, 160, 320, 0, 80, 160, 320, 0, 8¢, 160, 320, 0, 83, 160, 324,

480, 640, 800, 1120 480, 640, 800 480, 640 480

sample and a larger dose range and the results were
qualitatively very similar to the preceeding ones, with

Another semi-experimental simulation was made
identical to the second one but with another quartz
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more pronounced tendencies to give completely
erroneous palacodoses by fitting on the 1st DRC only.
The shape of the growth curve appeared bi-exponential.

In the two simulations reported here, slightly better
results were obtained with the simple regression (SI) in
the special case of low palaeodoses and narrow dose
range of extrapolation ( bottom, right of the tables) but
in these cases, the two palacodoses calculated with the
two regression techniques were close to each other.

Discussion

The first example studied here can only give an
indication of what can happen in reality because only a
specific type of growth curve and fit was studied.
However, it shows that, if the function chosen does not
correspond exactly to the physical phenomenon to be
fitted, large systematic errors can affect the calculated
palaeodose. These errors can be reduced by using the
shape of the 2nd DRC. Recognizing from the 1st DRC
the appropriate function to be used, e.g., in the present
case, a bi-exponential one, would evidently improve the
results by application of an adapted treatment like the
one proposed by Li (1991) or by Bulur and Ozer (1992).
In practice a major difficulty comes from experimental
uncertainties, which, mostly at the onset of saturation,
can accommodate a wide variety of fitting functions.

The use of the 2nd growth data will significantly reduce
the freedom of movement, mainly in the dose range of
interest, i.e., below the dose equivalent to the
palacodose and far from saturation. But a frequent
drawback in the application of the 2+ technique to
experimental results is the effect of sensitization, which
not only results in enhancement (generally) of the
height of the signal for a given dose after annealing, but
in frequent modifications of the shape of the dose
response curve. Other reasons such as a differential
behaviour under alpha and gamma irradiation can also

 modify the shape of the 2nd growth (see Aitken, 1985,
p.139). In practice, the 2+1 technique can be used
provided the whole fitting curve derived from the 2nd
DRC lies within error limits of the experimental points
of the lst DRC. If this is not the case, no reliable
palaeodose can be calculated by this technique and the
situation reverts to that which obtains when only the
1st DRC is available.

Table 2.

11

Evaluation of the error associated with the determination
of the palaeodose is not a simple task and, as outlined
by Griin (1991) in the field of ESR dating, "little
attention has been paid to the correct estimate of this
parameter”. It could be added, that most of the literature
deals with standard deviations deriving from the
regressions, but not with systematic errors generated by
the use of improper functions. The present simulation
suggests that those systematic errors can be
substantially greater than the s.d.; it then appears
illusory to make great efforts in improving the rapidity
and performances of regression algorithms unless they
are more relevant from a physical point of view. For the
same reasons, it is not worthwhile to search for a perfect
definition in the distribution of the palaeodoses
calculated with the Monte Carlo technique by increasing
the number of draws. A realistic estimation of the s.d.
will not require more than 100 draws, and this is
available with a very acceptable duration of calculation
with a PC computer (see note at end of paper).

An additional improvement of the technique would be in
taking into account the different precisions of the
experimental points by weighting them by inverse
variance (expressed in percentage of the intensity in this
case), such as tested by Griin and Rhodes (1992). As
concerns TL, no important modifications of the results
can be expected because, as mentioned above, the
relative uncertainty of the intensity is nearly constant
for a given sample.

As illustrated on fig. 4 and in table 1, the use of the 1st
DRC only results in very large uncertainties in
unfavourable cases - where the maximum irradiation
dose is small and the growth-curve is at the onset of
saturation; because this situation is sometimes seen in
the literature, this caution is emphasized.

The fact that reducing the dose range of the two growth-
curves towards low doses in the regression improved the
results can be qualitatively explained; as the dose range
is reduced, the fit to the curvature improves, also leading
to an improvement in the estimation of the palaeodose.
However, as shown by Griin and Rhodes (1991), this is
not always the case and reality is more complex. But we
want to emphasize this principle for many cases and
particularly when it seems more or less evident; e.g.,



12

Ancient TL, vol. 11 No.1 1993

Idem table 1, for the experimental test data (see fig.5), with a Monte Carlo technique (100 draws). Errors are quoted at

one s.d..

Preset Calculated Palaeodose / Preset Palaecodose

Palaeodose

(Gy) S.1 2+1 S.1 2+] S.1 2+1 S.1 2+1

145 1.1810.06 1.05£0.04 1.10+£0.07 1.0310.04 1.15+0.07 1.03+x0.04 1.1110.09 1.011+0.05
[1.18] [1.04] [1.12] [1.03] [1.16] [1.03] [1.11] [1.02]

*1st Growth 0, 145, 290, 435, 725,
1015, 1305 1015

*2nd Growth 0, 145, 290, 435, 580,

0, 145, 290,435, 725,

0, 145, 290, 435, 580,

0, 145, 290, 435, 725 0, 145, 290, 435

0, 145, 290, 435, 580, 0, 145, 290, 435, 580

870, 1160, 1450 870, 1160 870

* Radiation dose points (Gy)

Preset Calculated Palaeodose / Preset Palacodose

Palaeodose

(Gy) S.1 2+1 S.1 2+1 S.1 2+1 S.1 2+1

290 - - 1.10£0.11 0.91+0.04 0.95+0.12 0.95+0.05 0.98+0.14 0.89+0.06
[1.11] [0.91] [0.97] [0.96] [1.00] [0.90]

*1st Growth 0, 145, 290, 580, 870, 1160 0, 145, 290, 580, 870 0, 145, 290, 580

*2nd Growth 0, 145, 290, 435, 580, 0, 145, 290, 435, 580, 0, 145, 290, 435, 580

870, 1160

870

when a 'second rise' occurs. Above a certain dose, the
corresponding dose range can be discarded from
regression by considering that the physical phenomenon
which becomes dominant at high doses is unimportant
in the low dose range. When high dose points have a
negative influence on the extrapolation, this effect will
be enhanced when the absolute differences between the
points and the fitting curve (and not the relative ones)
are used in the regression.

The second (experimental) simulation illustrated two
aspects of this discussion. Firstly, although the dose
response curve seemed to be nearly exponential, it was
sufficiently different from an exponential to induce a
significant error when the 1st DRC only was considered
in the extrapolation and, secondly, the calculated error
did not take into account this systematic error.

In order to get a crude estimation of the systematic error,
we computed the mean value r of the ratios (calculated
palacodose/preset palaecodose) for the two techniques and
for the two examples (i.e. table 1 and table 2). The
results were:

Table 1: rg; = 1.36 (s = 0.26); ra41 = 0.96 (s=0.12)
Table 2: rg) = 1.08 (s = 0.08); r24+1 =0.98 (s= 0.06)

It appears that an important systematic ovcrestimation
of the true palacodose can be expected with an

extrapolation of the 1st DRC only (S1), whereas this
systematic error remains within acceptable limits for the
2+1 technique. For the time being, it is necessary to
assess a systematic error to be quadratically added to the
random error in the quotation of the overall error using
the 2+1 technique; the intermediate value of + 6% can
be used provisionally.

Conclusion

It has been demonstrated, with two examples, that
extrapolation of an additive growth curve can result in a
completely erroneous palacodose when the fitting
function is taken to be exponential but does not in fact
accurately represent the dose response of the sample.
Generally, results are significantly improved when the
shape of the fitting curve is derived from the shape of
the second dose response curve, as in the 2+ technique.
Growth curves obtained with experimental data are rarely
strictly saturating exponential but the width of
experimental errors often hinders an appreciation of the
exact mathematical description of the dose response
curve. However, a necessary further step of improving
the 2+1 technique will consist in developing more
suitable fitting functions. We recommend a pragmatic
approach such as the 2+ technique of regression since
it is more realistic than some sophisticated techniques
applied to the 1st DRC only, even if the curves derived
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from those techniques seem to provide better
mathematical fits to the available data. At the same
time, the simulations presented here should encourage
one to be very generous with the size of the errors
quoted on TL/ESR ages!

Note on computing specification. Calculations were
made using a program written in Turbo Pascal and
running on a PC with a 80386SX CPU and 80387
(16MHz) coprocessor The overall duration for 100 draws
ranged from a few seconds and a few tenth of minutes,
depending on the shape of the curve.
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