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Introduction

A common, flexible curve fitting algorithm has
recently become available in a commercial graphical
software package for both PC’s and Mac’s

(Kaleidagraph©). The source code of the algorithm
is also available from standard numerical recipes
packages in FORTRAN, BASIC, Pascal and C

(©Press et al. 1992). We assess the algorithm's
ability to model saturating dose responses by
comparing it to other established methods using the
test data of Berger and Huntley (1989) for two
intersecting and saturating curves constructed from
the partial bleach method. The utility of the package
for other applications is also discussed.

The Levenberg-Marquardt (LM) algorithm
has some unique properties relative to other, more
established algorithms devoted to modeling
saturating exponential data sets (Berger et al. 1987,
Brumby 1992, Griin and Macdonald 1989, Poljakov
and Hiitt 1990). It has been validated as an excellent
tool for deconvoluting EPR spectra (Haskell et al.
1996A&B, Haskell et al. 1997A&B, Kenner et al.
1998, Jonas 1995 & 1997, Pilawa et al. 1995,
Polyakov et al. 1995) and has also been used for, or
in conjunction with, TL spectral deconvolution
(Lucas and Akselrod 1996, Emfietzoglou and
Moscovitch 1996). The algorithm can also fit
standard OSL curves containing multiple centers
scanned using either the conventional shine down
method or the new linear modulation technique
(Bulur 1996, Bulur and Goéksu 1997, Figure 1). This
allows the same software to be used for multiple
applications, from first determining the measurement
amplitude (via deconvolution) to fitting the resultant
dose response.

The form of this dose response can vary
from a linear response to multiple saturating
exponentials (and virtually all other forms including
sublinear, supralinear etc.) while still being modeled

appropriately with the algorithm (assuming that the
correct model is used). The algorithm also provides
uncertainty estimates for all parameters of the fit. A
tangential application where this becomes useful is
in estimating the saturation dose for the material
being studied. This is required to determine when a
linear fit rather than a saturating exponential fit
should be applied to the data (i.e., the maximum
dose applied should be £ 1% of the saturation dose
for linear fitting to be statistically more accurate, see
Griin 1996). However, this criterion should only be
applied if accurate values with reliable uncertainties
can be assured. The importance of using the correct
model, errors and fitting procedure 1s clearly laid out
in the literature (Berger et al. 1987, Berger 1990,
Grin 1996, Grin and Brumby 1994, Grin and
Rhodes 1992, Griin and Packman 1993, Guibert et
al. 1996, Lyons et al. 1992).

The LM method for nonlinear fitting is a
numerical compromise between the Gauss-Newton
method of linearization (used by Berger et al. 1987)
and that of steepest descent. The LM method uses a
least squares criterion for convergence and can
therefore be expected to give results similar to the
method of Poljakov and Hiitt (1990) (which
iteratively uses a strict least squares method to
determine two parameters and a Newton-Raphson
method to determine the third) for unweighted
saturating exponential data. In generating the curve
parameters, the LM algorithm also generates the
covariance matrix for the model and data (see Press
et al. 1992). It is from the diagonals of the
covariance matrix that the individual variances of the
fitted parameters are taken (Press et al. 1992). The
LM method does require that the initial estimates be
sufficiently near (typically within an order of
magnitude, Motulsky 1997) the optimum values to
attain a reliable convergence.
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Aliquot curve parameter GWB SC S-m DOSE LM
QNLS84-2 14.28 14.25 14.25 - 14.25
unbleached I, (x 10'4) +0.46 £0.56
QNL84-2 122.7 121.9 121.9 121.9 122.0
unbleached Dy +6.7 +6.7 +6.8 +83
QNL84-2 392 390 389.9 - 390
unbleached Dg +31 +38
QNL84-2 9.64 9.7 9.67 - 9.67
bleached I (x 1074 +1.0 +0.86
QNL84-2 193 195 195.2 195 195
bleached Dy +19 +20 +20 +17
QNL84-2 762 770 773 - 770
bleached Dg + 150 +130
STRB87-1 21.21 21.15 21.15 - 21.18
unbleached Iy (x 10™%) +0.48 £0.45
STRB87-1 0.583 0.583 0.583 0.591 0.591
unbleached Dy +0.018 +0.018 +.020 +0.017
STRB87-1 5.96 5.95 5.95 - 5.98
unbleached Dg +0.25 +0.23
STRB87-1 12.043 | 12.03 12.03 - 12.03
bleached I, (x 10 | $032 , $0.32
STRB87-1 0.680 0.682 0.682 0.682 0.682
bleached Dy +0.023 +0.023 +0.023 } £0.023
STRB87-1 6.67 6.68 6.68 - 6.68
bleached Dg +0.31 +0.31
STRB87-1 0.485 0.481 - 0.481
intersection +0.037 +0.080 - +0.031
QNL84-2 86 85 - 85
intersection +10 +21 - +28
Table 1.

Curve parameters from modeling saturating exponential data. Corresponding error estimates (when
available) are also given. Here 1, is the saturation intensity, Dy is the dose estimate and D, is the
characteristic saturation dose. The GWB method is the quasi-likelihood method of Berger et al. (1987),
SC is the simplex algorithm (Berger and Huntley 1989), S-m is a weighted least squares method (Berger
and Huntley 1989), DOSE is the simplex algorithm with quadratic convergence from Brumby (1992)
and LM is the Levenberg-Marquardt method. The error estimators of the two curve intersections for

the LM method were calculated using basic first order error propagation.
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Like the methods of Brumby (1992), Griin
and Macdonald (1989) or Poljakov and Hiitt (1990),
the LM fitting method does not have the ability to
rigorously assess the relative error distribution of the
data as does that of Berger et al. (1987). These
errors must be independently determined if LM
fitting is to be used (a very basic and simple method
for estimating these uncertainties is described
below). This is important because Griin and Rhodes
(1992) verified the earlier derivation of Berger et al.
(1987, appendix A) that curve fits to saturating
exponential dosimetry data should be weighted by
relative terms. It should be pointed out, however,
that if a case were found where relative errors could
be demonstrated to be negligible, then this would no
longer be expected to be the case and equal
weighting would be expected to give better results
(Franklin 1986). The most common instance in
which this will occur is when the high frequency
noise from the measurement instrumentation (or
other source) becomes large relative to the size of
the dosimetric signals being evaluated. Examples
fulfilling this criterion, and more precise descriptions
of the effect, are given both by Hayes et al. (1997)
and Scott and Sanderson (1988). In general, this is
not expected to be observed in geological dating
studies but should be restricted to more recent
archeological dose reconstructions (Grin and
Macdonald 1989). When the case of mixed errors is
encountered (where neither the constant or relative
errors are negligible), the appropriate weighting
terms are given by Bluszcz (1988). )

Using the saturating exponential test data of
Berger and Huntley (1989), with the modified data
point mentioned by Huntley (1996), we compare the
results of the LM routine to the quasi-likelihood
method of Berger et al. (1987), the simplex method
(Berger and Huntley 1989), a weighted least squares
method (Berger and Huntley 1989) and the quadratic
convergance method of Brumby (1992).

Results

The LM method appears to be comparable in both
parameter and error estimation to the other fitting
methods based on the results given in Table 1 (error
estimates were not available for all the parameters of
some of the other fitting methods). Here, we have
included the calculations of the intersections and the
first order error estimates of the uncertainties
associated with the two intersections. The data were
weighted with either 4% or 3% relative errors as
done in Berger and Huntley (1989) so that a direct
comparison could be made to their data. This was
done because the calculated errors (not the fitted
parameters) using the LM fitting method for data
weighted by inverse variance are directly
proportional to the relative error selected (which is
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true for other methods also). If the weights chosen
were increased or decreased by a factor of ten, then
the error estimates would also be increased or
decreased by a factor of ten respectively despite the
identical fitted parameter values.

Because of the necessity to weight
saturating data by relative errors, the magnitude of
the relative error must be reasonably estimated and
supplied to the LM algorithm prior to the fit. We
offer a simple, model-dependent method. This is to
initially fit the data with a weighted saturating
exponential (here the weights are relative errors of
arbitrary magnitude) to first estimate the residuals
(the residual for each data point is the vertical
distance from that point to the curve fit). We then
divide each residual by the magnitude of the curve fit
at the respective point. After taking the average of
these numbers, we can equate this to the relative
error magnitude which we should use in the LM
method for a weighted fit to the data. This approach
assumes both a correct model was employed in the
weighted fit (e.g., single saturating exponential) and
that the residuals are Gaussian distributed with
variance dominated by relative values (constant
errors, systematic errors etc. are assumed negligible).
Because the fitting parameters will not be affected by
a change in the magnitude of the weighting terms of
the relative error (only their error estimators will be
), iteration is not necessary for this approach. -
Application of this method resulted in average
relative error amounts of 2.2% for the STRB87-1
measurements and 2.9% for the QNL84-2
measurements.

It should be pointed out that this simple
approximation method is not offered as an optimal
approach but rather as an easy to use approximation.
It will not be acceptable in all cases. Indeed the
main advantages of other established methods
(Berger et al. 1987) over that of LM is their implicit
ability to determine the respective weights for use in
fitting each data set and to iteratively assess the
uncertainty in the intersection of the two curve fits.

Some comments addressing convergence
reliability and accuracy are now in order. Our
comments are based on 4 years experience of
modeling dose response data using the LM
algorithm. When the maximum dose is less than
about 10 percent of the saturation dose (Dg,) the
estimates and associated uncertainties for both Dg
and the saturation intensity I will converge to
arbitrarily large values (with the uncertainties being
typically at least a few orders of magnitude larger
than their associated parameters). In the same
situation however, the x-intercept of the fit with its
estimated uncertainty is similar to that obtained
using a linear fit. The algorithm otherwise will
converge (with reasonable parameter and uncertainty
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estimates) for all data sets even when the relative
errors are approaching 30% (which indicates the data
set itself is not useful).

Example
A straightforward application for LM deconvolution
is shown in Figure 1 which was done entirely using

the software package Kaliedagraph©. Here we show
a spectrum from the dose response of a K-feldspar
sample. The sample was scanned using the new
linear modulation method of OSL (Bulur 1996). The
resultant dose response from the three signals used to
model the spectrum are shown in Figure 2. The data
for Figures 1 and 2 were supplied by Enver Bulur.
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Figure 1.

Spectral deconvolution of an OSL curve recorded
using the linear modulation technique (Bulur 1996).
The curve fits used an unweighted model. This
spectrum was chosen for the figure because it had
the lowest correlation (it also had the lowest dose of
2.825 Gy) . The form of the curve used for the
model assumed first order kinetics resulting in curve
shapes of the form

Y=-mi *X*exp(-XZ/(Z*mZZ))/ m22.

This allowed us to consider only the dependence on
the m1 parameter for the dose response although the
m2 parameter was consistently stable to within 2%
for each signal.
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Figure 2.

Curve fit to the saturating exponential data set
generated by the linear modulation OSL technique.
The curve fit for each dose response from the three
deconvoluted signals shown in Figure 1 are
displayed. By plotting the ml parameter (see
caption to Figure 1) we effectively plot the
integrated spectrum of each signal. Using the
method described in the text for the LM algorithm,
the fits were weighted with 2% relative errors. The
applied doses were 2.825, 5.625, 11.25, 22.5, 45, 90
and 180 Gy. This resulted in reconstructed doses
Dy of 420+95 mGy, 424428 mGy and 686+106 mGy

for signals 1, 2 and 3 respectively.

Conclusion

Because it is available as either a canned numerical
routine (Press et al. 1992) or an integrated
component of a commercial graphing software

package (Kaleidagraph©), the LM fitting routine is
readily available with little required effort of the
user. Reasonable estimates may now be obtained in
a user friendly graphing program using a viable
algorithm for modeling many of the data sets
encountered in dating and retrospective dosimetry.

It should be born in mind however that for
the  specific  application considered here
(determination of the intersection of two intersecting
saturating exponentials), more accurate and precise
algorithms can be found in the literature (Berger et
al. 1987). This is due to both the lack of the LM
algorithm to do any implicit and rigorous treatment
of the dual curve intersection error analysis and also
its inability to implicitly determine the error
distribution of the data set it is modeling.

The method has some potential benefits not
offered by certain other routines in use. In
particular, it has the necessary flexibility to model
saturating-exponential-plus-linear data (Hiitt and
Smirnov 1983, Berger 1990, Berger 1991), multiple
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saturating exponentials (Katzenberger and Willems
1988, Packman and Griin 1992), data with
supralinearities (Valladas and Gillot 1978) or any
number of other models used in TL/EPR dose
responses (Berger 1985, Berger 1987, Guibert et al.
1996). The minimum requirements for using the
algorithm is that both the fitting function and its
gradient can be calculated (if these are not given in
closed form then numerical calculation can be
implemented at the cost of convergence speed).
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Reviewer
G. Berger

Comments

The authors deserve thanks for enduring my
suggested iterative revisions. It is worth mentioning
a few points here. All users of statistical packages
should be alert to the assumptions and limitations of
the methods used . The authors carefully point out
that the LM method can be weak in error analysis
(second last paragraph in Results section). Its
strength appears to be in versatility and ease of use.
Note that the «saturating exponential » model of
Berger et al. (1987) can also be used successfully
with most sublinear data, sometimes with supralinear
data. However, as discussed by Berger et al. (1987),
second-order polynomials (quadratics) may work
better (as good approximation) than their
exponential-model method for supralinear data,
certainly for two intersecting curves. As well, the
methods of Berger et al. (1987) and Berger (1990)
probably may also be used to obtain estimates of
uncertainties in certain fitting parameters (e.g. Do
and Ip), but have not yet bothered to extract this
information from the covariance matrices. Also, it
appears that the authors’ approximate method for
estimating relative errors in advance of solution by
LM is equivalent to the use of equation 4 in Berger
et al. (1987), except that the latter includes. a
weighting term in this equation (making it iterative). .

Finally, for new workers in TL/OSL/ESR it

is worth mentioning that the basic arguments for the
use of weighting by inverse variance have deep
historical roots. Several of these roots are cited in
Berger et al. (1987). Among these are citations of
Deming (1949), and the papers of York. I urge
readers to consult York’s papers on regression and
error analysis from time to time. Although his papers
deal with linear models, some of the concepts are
still relevant to sublinear models.



