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  It is common practice to calculate the relative 
standard error of a background-corrected optically 
stimulated luminescence (OSL) count by assuming 
Poisson errors. This note corrects a formula given by 
Banerjee et al. (2000) and suggests alternative 
formulae for use when the variation in background 
counts is larger than that implied by the Poisson 
distribution. For moderately bright samples, the 
contribution to the relative standard error from 
estimating the background rate is small, whichever 
formula is used.  

  The usual scenario is as follows. Optical stimulation 
of an aliquot of quartz produces a series of counts - a 
number of recorded photons for each of N equal 
length consecutive time intervals (channels). For 
example, Banerjee et al. (2000) used a stimulation 
period of 60 s with counts in N = 250 channels each 
lasting 0.24 s. The OSL "signal'' is measured from the 
total count in the first n channels minus an estimate 
of the contribution to this count from background 
sources. Often n is taken to be quite small, for 
example n = 5, corresponding to the first 1.2 s of 
stimulation. The background emission rate is 
assumed to be constant over the whole 60 s, and is 
estimated from counts near the end of this period, 
where the contribution from the signal is assumed to 
be negligible.  

  Mathematically, the above may be expressed as 
follows. Let yi denote the OSL count from channel i, 

for i = 1, 2, …, N, and let be the total 

count over the first n channels. Write 
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Y0 = S0 + B0  

where S0 and B0 are the contributions to Y0 from the 
signal (or source of interest) and background 
respectively. Of course S0 and B0 are not observed 
directly. Assume that S0 and B0 are independent 
random quantities with expectations µS and µB, and 
variances σ2

S and σ2
B, respectively. Then the 

observed count Y0 will have expectation µS + µB and 
variance σ2

S + σ2
B. An estimate of the signal µS is 

thus obtained by subtracting an estimate of µB from 
Y0, i.e.,  

BS µYµ ˆˆ 0 −=  

We want to calculate the relative standard error of 
this estimate.  

  An estimate of µB is usually obtained from the 
average OSL count over the last m channels, for 
some suitable m chosen so that the contribution from 
the signal is negligible. It is useful to choose m be a 
multiple of n: let m = nk, say. For example, Banerjee 
et al. (2000) used the last m = 25 channels (6 s) of the 
series, corresponding to k=5 when n=5. Then let Y1, 
Y2, …, Yk denote the total counts in the last k sets of 
n channels, i.e.,  

Yj = 
N−jn+n 
∑ 
i=N−jn+1  

yi  

 

for j = 1, 2, …, k. Thus Y1, Y2, …, Yk are all counts 
over n channels (the same as for Y0) and we assume 
that they are independent random quantities from the 
same distribution as that of B0 (i.e., the signal is 
negligible). In particular, each has expectation µB and 
variance σ2

B. The estimate of µB may then be written 
as  
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and this has variance Hence the 
variance of the estimated signal (corrected for 
background) is 
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and the relative standard error is  
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In order to calculate this relative standard error in 
practice, we need estimates of σS

2 and σB
2 in addition 

to the estimate of µS.  

In the usual case where Y0, Y1 …, Yk are assumed to 
have Poisson distributions, σS

2 = µS and σB
2 = µB. 

Then (1) becomes  

kBBSS /)ˆvar( µµµµ ++=  

which may be estimated as Y0 −⎯Y + ⎯Y + ⎯Y/k = Y0 
+ ⎯Y/k. Substituting these estimates into (2) gives the 
following estimated relative standard error:  
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This differs slightly from the formula on page 833 of 
Banerjee et al. (2000), where the second term in the 
numerator is equivalent to 2⎯Y/k. The above 
argument shows that the factor 2 should not be there.  

  A drawback with equation (3) in practice is that 
there is sometimes evidence that the background 
counts do not have a Poisson distribution, but are 
over-dispersed (e.g., Galbraith et al., 1999, p 348). 
For example, the variance 

sY
2 = [ 1/(k−1)] ∑j=1

k (Yj − ⎯Y)2 

 may be substantially larger than the mean count ⎯Y 
(see below). Then we may write 

 σB
2 = µB + σ2  

for some positive value of σ2 to be estimated. An 
obvious estimate is 

                        YsY −= 22σ̂                                   (4) 

provided this is positive. But there is a drawback with 
this too: in order to be confident that the contribution 
to ⎯Y from the signal is negligible, it might be 
necessary to use a quite small value of k (e.g., k=5 as 
above), so that sY

2 will be based on a small number of 

degrees of freedom. A more reliable estimate may be 
obtained by pooling the background variances for 
several series. For example, for four series of 
stimulation with background means ⎯Y1, ⎯Y2, ⎯Y3, 
⎯Y4 and variances sY1

2, sY2
2, sY3

2, sY4
2, each with k−1 

degrees of freedom, one may use  
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i.e., the average variance minus the average 
background count for the four series. This pooled 
estimate of over-dispersion could be used for each 
series, while at the same time using separate 
estimates of background level.  

  It is not so straightforward to obtain a corresponding 
estimate of σS

2 because the expected counts change 
rapidly at the start of the stimulation period. But there 
is perhaps a case for assuming that S0 does have a 
Poisson distribution, while B0 does not. The former 
comes from pure OSL emissions while the latter 
comes from other sources such as scattered light and 
instrument noise, which may not exhibit Poisson 
variation. Then we still have σS

2 = µS and the 
resulting estimated relative standard error is  
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This formula will agree closely with (3) when  is 
small, but may be preferable when  is large.  

2σ̂
2σ̂

  To get a feel for the numerical consequences, 
suppose Y0 = 12500 and ⎯Y = 50, with n=5 and k=5. 
These numbers are comparable with the "bright" 
sample in Banerjee et al. (2000). Suppose also that 

 = 75, corresponding to a reasonably substantial 
amount of over-dispersion (σ

2σ̂
B

2/µB ≈ 2.5). Then the 
relative standard errors from (3) and (6) are 0.00898 
and 0.00902, respectively, which are practically 
equal. The corresponding absolute standard errors are 
111.8 and 112.2. Indeed, if we treated the background 
as being known exactly, the relative standard error of  

would be 0.00896, also practically the same. But 
for a weak signal, with Y

2σ̂
0 = 200 and the same ⎯Y 

and  as above, the two relative standard errors are 
0.0966 and 0.1155, and the two absolute standard 
errors are 14.5 and 17.2. In general, when the signal 
is weak, equation (6) may give a somewhat larger 
relative standard error than (3). But when the signal is 

2σ̂
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strong, both equations give similar answers and in 
fact the error in estimating the background is 
practically negligible.  

ad to 
the following estimated relative standard error:  

  An alternative assumption when there is over-
dispersion is that neither S0 nor B0 have Poisson 
distributions, but that the ratio of the variance to the 
mean is the same for each, i.e., σS

2/µS = σB
2/µB. It is 

perhaps hard to think of a physical justification for 
this: it would imply a multiplicative error mechanism 
that affected all counts from whatever source. So it 
would presumably be error associated with the 
measurement process rather than the process 
producing the counts. In any case, this would le

YY
kYY

Y
rse S −

+
×+≈

0

0
2 /ˆ

1)ˆ( σµ              (7) 

quation (3
o

where  2σ̂ is given by (4) or (5). Here e ) is 
multiplied by a factor corresponding t  Bµ/ . In 

the above examples this factor would 

Bσ 2

5.2  ≈ 1.6. In 
general, this formula is more conservative than (3) or 
(6).  

. One calculates the Poisson 
index of dispersion  

  Some further remarks may be useful. Firstly, there is 
a simple statistical test for assessing whether the 
counts Y1, Y2, …, Yk vary consistently with a 
Poisson distribution

YskI Y /)1( 2−=  

and assesses its significance from the χ2 distribution 
with k−1 degrees of freedom (see for example Kotz 
and Johnson, 1987, p 25). The quantity I is akin to a 
χ2 statistic, a significantly large value of I being 
evidence of over-dispersion, i.e., the ratio sY

2 / ⎯Y is 
too large to be consistent with σB

2/µB = 1. Of course 
there are various ways to test whether data agree with 
a Poisson distribution; this is a useful method when 
there is only a small number of counts.  

orm of the 
single-aliquot regenerative-dose protocol,  

  Secondly, estimating a palaeodose typically uses 
products and ratios of background-corrected OSL 
counts. Then the approximate relative standard error 
of the product or ratio is simply obtained by 
combining the individual relative standard errors in 
quadrature. For example, for the simplest f

palaeodose    =   
 sn

sr

× 
 tr 

 
tn

×  regenerative dose  , 
 

where sn, tn, sr and tr are estimated from background-
corrected counts arising from optical stimulation of 
the natural dose, a subsequent test dose, a 
regenerative dose and its corresponding test dose, 
respectively. Then the relative standard error of the 
palaeodose estimate (assuming the regenerative dose 
is known exactly) is just the square root of the sum of 
the squared relative standard errors of the estimates 
of sn, tn, sr and tr.  

  Thirdly, subtracting an estimated background level 
from a weak signal can produce inappropriate 
estimates. An alternative approach is to estimate the 
signal in the presence of the background using 
statistical models (e.g., Galbraith et al., 1999).  

  Finally, when estimating palaeodoses or other OSL 
parameters from several aliquots of quartz, whether 
using single- or multiple-aliquot methods, there are 
usually other sources of variation to account for in 
addition to those reflected in (3), (6) or (7). These 
may be more substantial and work on estimating 
them is in progress.  

  I thank John Prescott, Bert Roberts and Andrew 
Murray for useful comments on an earlier version of 
this note.  
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