
www.ancienttl.org · ISSN: 2693-0935

Galbraith, R., 2010. On plotting OSL equivalent doses. Ancient TL 28(1): 1-9. 
https://doi.org/10.26034/la.atl.2010.433

This article is published under a Creative Commons Attribution 4.0 International (CC BY): 
https://creativecommons.org/licenses/by/4.0

©  The Author(s), 2010

https://www.ancienttl.org/
https://doi.org/10.26034/la.atl.2010.433
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Ancient TL Vol. 28 No.1 2010                                                                                                                                                                              1 

On plotting OSL equivalent doses 
 
R. Galbraith 
 
Department of Statistical Science, University College London, Gower Street, 
London, WC1E 6BT, UK (email rex@stats.ucl.ac.uk) 
 

(Received 27 November 2009; in final form 18 December 2009) 
_____________________________________________________________________________________________ 
Abstract 
This article is motivated by some recent discussion of 
the use of so-called ―probability density‖ plots of 
OSL equivalent doses. Such graphs are not advocated 
in the statistics literature. I try to explain what they 
are doing, why they are easy to mis-interpret and why 
they are not to be recommended. I include discussion 
of the meaning of dose frequency distributions, 
statistical research on the problem of estimating a 
frequency distribution when observations from it 
have added errors, and the possible role of dose 
histograms, in addition to radial plots, as data 
displays. 
   
Introduction 
There has been some recent discussion of the use of 
so-called ―probability density‖ (PD) plots for 
displaying single grain, or single aliquot, OSL 
equivalent doses, and it was suggested to me that I 
might contribute to this. PD plots are used quite 
widely, as can be seen by perusing articles to be 
published in Quaternary Geochronology arising from 
the 12th International Luminescence and Electron 
Spin Resonance dating conference. Some years ago 
they were used by the fission track community to 
display single grain fission track ages. I criticised 
them then on several grounds: they do not estimate 
the true age distribution, modes in a PD plot do not 
necessarily correspond to discrete component ages, 
they obscure good information by combining it with 
bad, and their reliability was untested (Galbraith, 
1998). They have been largely abandoned by the 
fission track community — I suspect mainly because 
they have not been found useful in practice.   
 
In principle those criticisms also apply to OSL 
equivalent doses, though the popularity of PD plots 
here suggests that some people do consider them to 
be useful. However, they do not appear to have been 
advocated in the statistics literature. In this article I 
will try to explain what I think PD plots are doing, 
why they are difficult to interpret, and what 
alternatives there might be.  Some of these ideas are 
also in a book chapter (Roberts and Galbraith, in 
press) which is to appear, though it was originally 
written in 2006. 

What are the data? 
We have a set of bivariate observations — an 
equivalent dose and its standard error for each of n 
quartz grains or aliquots, where n might be as low as 
20 or 30 or as high as several hundred. A general 
feature of such data is that both the observed doses 
and their standard errors vary. Usually they vary 
together, with a higher standard error associated with 
a higher dose, the main exception to this being when 
the observed doses are close to zero. 
   
A natural candidate for a graph is therefore some sort 
of bivariate plot; and a particularly useful one is a 
radial plot, which most readers will be familiar with. 
Descriptions of this method can be found in Galbraith 
et al. (1999), Galbraith (2005), Roberts and Galbraith 
(in press) and in other references cited there, so I will 
not deal with them further here. It is worth 
emphasising, though, that radial plots have optimal 
statistical properties (Galbraith, 1988) — they display 
the data as informatively as is possible and without 
distortion. They have also been found to be powerful 
in practice and can reveal features not otherwise 
apparent.  Regardless of what other plots are also 
made, I would recommend researchers to look 
carefully at a radial plot of their equivalent doses. 
   
A radial plot, though, does not provide an explicit 
picture of the frequency distribution of equivalent 
doses, which is perhaps why researchers may want to 
see some sort of frequency curve. However, we need 
to think carefully about what the frequency 
distribution of doses is and whether it has a useful 
scientific meaning.  Sometimes it does not, and it is a 
strength of the radial plot that it does not force this 
interpretation on the reader. 
 
Dose frequency distributions 
The information in a relative frequency distribution 
of observed equivalent doses is complicated. It 
contains mixtures of received doses, natural variation 
and estimation errors — some of which are 
multiplicative and some additive — and does not 
simply relate to the relative numbers of grains in 
some real population that have received each possible 
dose. It is much more complicated than, for example, 
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a frequency distribution of heights of men or weights 
of babies. 
 
Consider a hypothetical situation where we have a 
sample of single grain equivalent doses from a field 
sample of quartz that have been measured essentially 
without error (i.e., with negligible standard errors).  
The doses received in nature may differ between 
grains for various reasons, such as differing burial 
history or partial bleaching.  Furthermore, even if 
each grain had experienced the same radiation dose 
in nature, the measured doses (even though measured 
exactly) would vary because of natural variation in 
luminescence properties between grains. Different 
scenarios will typically produce different dose 
distributions — for example unimodal distributions 
with low dispersion (perhaps representing only 
natural variation in luminescence), mixtures of two or 
three such component distributions, or highly 
heterogeneous, asymmetric or multimodal 
distributions. 
  
What would knowing the shape of the frequency 
distribution of the doses tell us?   
If we are lucky, it might indicate the type of sample 
or scenario we have.  But before going further, there 
is another question: does this frequency distribution 
represent a natural phenomenon or is it largely a 
result of the process of grain selection and 
measurement?  In the latter case it may be of more 
limited interest, and possible inferences from the data 
may also be more limited. 
   
For example, suppose that each grain in our sample 
had essentially experienced one of two alternative 
burial histories, so each had received one of two 
radiation doses (e.g., by mixing of grains from two 
juxtaposed sedimentary strata that differ significantly 
in age). We could fit a two component mixture to 
estimate those doses. But would the estimated mixing 
proportions reflect anything other than artifacts of the 
experimental procedure, particularly grain selection? 
After all, only a small fraction of grains in a sample 
actually produce a measurable luminescence signal 
and these could be a highly non-random subset. 
Nevertheless, the component doses themselves 
should still be meaningful.  The same applies to 
mixtures of more than two components — what do 
the mixing proportions represent?  And by extension, 
what do the relative frequencies of different doses 
represent?  In particular, does the most frequent dose 
in a sample have any special scientific relevance or 
meaning? These are questions for practitioners. The 
answer to the last one may sometimes be yes and 
sometimes no. 
   

For aliquots comprising several grains, the concept of 
a dose frequency distribution is more complicated. It 
makes some sense if all grains in the same aliquot 
have experienced the same burial history. Then any 
differences in ―true‖ single grain doses within an 
aliquot (had they been observed) would presumably 
just be due to differences in luminescence properties, 
and the aliquot equivalent dose would be 
representative of the burial history.  But if grains in 
the same aliquot had different burial doses, or had 
experienced different amounts of partial bleaching, 
then the aliquot dose distribution would be much 
harder to interpret. 
     
Incidentally, I have seen researchers fit finite 
mixtures (say with two or three component doses) 
and then choose the dose with the largest mixing 
proportion to be the relevant one.  This seems like 
bad logic, especially for samples composed of 
partially bleached sediments.  The relevant dose 
might be that corresponding to the youngest grains, 
and these could easily be a minority of the sample. 
This type of reasoning arises when looking at humps 
and bumps in frequency distributions too. 
   
Histograms and kernel density estimates 
Continuing with the case where our equivalent doses 
are measured without error, suppose that we do want 
a picture of the shape of the dose distribution. This 
could be provided (if there were enough grains) by a 
well-drawn histogram, which is essentially a graph of 
relative numbers of grains falling into different dose 
intervals (bins). Histograms are of course very 
familiar and widely used.  A possible alternative is a 
kernel density estimate (KDE).  This is a continuous 
curve that is an estimate of the probability density 
function (assumed to be continuous) of the 
distribution that the observations are supposedly a 
random sample from.  
 
Denote the sample of true doses by x1,x2,…,xn and 
imagine that they were drawn randomly from a 
distribution with probability density function f(x).  
Now think of a histogram of these with equal bin 
widths.  For a large enough sample, and small enough 
bin widths, this will give an idea of the shape of f(x).  
The area of each rectangle, and in this case also its 
height, is proportional to the number of observations 
falling in that bin, and (suitably scaled) is an estimate 
of the relative numbers in that interval in the 
population. 
  
Now imagine drawing a histogram by starting with a 
bin at the extreme left (with no data in it) and sliding 
that bin continuously along the x scale. At each value 
of x draw a point at height equal to the number of 
data values in the bin centered at x. The points will 
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trace out a curve that goes through the top middle 
points of the histogram rectangles plus more in 
between. That curve is a kernel density estimate of 
f(x) — in this case, using a rectangular ―window‖.  If 
you increase the bin width the curve will be smoother 
but may lose shape features, and if you decrease the 
bin width the curve will resolve more shape features 
but be more erratic.  Choice of bin width is a 
compromise between these two. 
  
Rather than using a rectangular window, many kernel 
density estimates use a Gaussian window, which does 
not have discontinuities at the ends.  The curve you 
then get is equivalent to drawing a Gaussian 
probability density function centered at each data 
value (each with the same standard deviation b which 
is chosen by you) and then summing them point-
wise.  This is simply a data smoothing method — as 
is counting up numbers in a histogram bin — there is 
no probability interpretation of this Gaussian 
window. 
 
The quantity b is called the bandwidth of the 
window, and is analogous to the bin width of the 
histogram: the larger b is, the smoother the curve but 
the less resolution in shape there is. Actually there 
are many types of window around — nowadays they 
are called kernel functions — including triangular 
and cosine, but the principle is the same. 
  
Statisticians have found that the shape of the window 
does not make much difference to the shape of the 
density estimate. What really matters is the 
bandwidth, which is a compromise between how 
much smoothing and how much resolution in shape 
you want.  Choice of bandwidth usually depends on 
the sample size, with smaller bandwidths used for 
larger samples. This is like choosing the bin sizes for 
a histogram. Note that any smoothing distorts the 
data and loses information. A kernel density estimate 
is always a biased estimate of f(x) and in statistical 
terms the choice of bandwidth is a compromise 
between reducing bias and reducing variance.  There 
is some theory about how to choose a bandwidth in 
order, for example, to minimise mean squared error 
(which is variance plus squared bias). In general large 
samples are needed to get reasonably informative 
kernel density estimates. 
  
As estimates of density functions, KDEs enjoy some 
theoretical advantages over histograms (Wand and 
Jones, 1995, p5). The main disadvantage of 
histograms in this regard is that their shape can 
depend on where the first bin starts as well as on the 
bin width. Being continuous, KDEs give an 
impression of high precision, even for small sample 
sizes — but often a spurious impression.  They have 

been developed by statisticians for over 50 years and 
are a useful exploratory tool, but they are not often 
used to present scientific data.  One reason, I think, is 
that a histogram is better for this purpose. A 
histogram explicitly displays proportions of 
observations in various intervals as areas, whereas a 
KDE displays relative frequencies as a continuous 
curve. A KDE does not so easily lend itself to visual 
comparisons or simple calculation; it emphasises 
humps and bumps in the frequency curve, many of 
which have no significance; and it hides information, 
particularly relating to sample size and variability. As 
a general-purpose graph, a histogram is nearer to the 
raw data, easier to use and more convincing. 
 
PD plots 
Now let us return to the situation where the standard 
errors are non-negligible and variable. Denote the 
observed doses and their standard errors for n grains 
by (yi, si) for i =1,2,...,n. 
   
A PD plot is constructed by replacing each yi with a 
Gaussian probability density function centered at yi 
and having standard deviation si, and then adding 
these point-wise to obtain a continuous curve. Its 
construction is similar to that of a KDE, but with a 
different kernel function (with a different bandwidth) 
for each observation. The plot has some intuitive 
sense: you can think of it as plotting for each 
candidate dose, the ―popularity‖ of that dose, as 
voted for by the n grains in the sample, where each 
grain spreads its vote (unequally) over several 
neighbouring doses, with more uncertain grains 
voting for a wider range of doses. Note that 
popularity comes both from frequency (yis close 
together) and precision (small si). Does a particular 
dose have any special scientific meaning simply 
because it is measured with high precision? Surely 
not. 
   
The name ―probability density plot‖ suggests that it is 
a plot of a probability density. An immediate 
question is: what probability density? The answer is: 
that of an equal mixture of n Gaussian distributions, 
where the ith component has mean yi and standard 
deviation si. In other words, a PD plot is plotting the 
probability density function of a random variable z 
constructed as follows: choose one of the n yis at 
random and add to it a Gaussian random error with 
standard deviation si. 
   
A second question is whether the random variable z 
(and its associated distribution) is of any interest.  To 
understand this, it is useful to think of a simple 
statistical model.  Suppose that for each given si, the 
observed dose yi is generated by the equation 
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yi = xi + ei                                          (1) 
    
where xi is randomly drawn from a distribution with 
probability density function f(x) and ei is randomly 
drawn from a Gaussian distribution with mean 0 and 
standard deviation si. Intuitively, xi represents the 
―true‖ dose (i.e., measured without error) for grain i 
and ei is the error in estimating xi (i.e., the difference 
between yi and xi).  Neither xi nor ei is observed. The 
function f(x) is unknown and our aim is to estimate it, 
or at least some of its features.  
   
This type of model is familiar. If we postulated a 
parametric form for f(x), such as Gaussian, we would 
have a version of the central age model. But here we 
are trying to let the data tell us something about f(x) 
without assuming a specific form. In the previous 
section we were essentially thinking about how to do 
this if we could directly observe the xis. 
  
Under this model, we can now think of obtaining a 
value of z by first choosing one of the n xis at 
random, adding a random  ei to it to get yi, and then 
adding another Gaussian random error to yi to get z. 
So the distribution of z (i.e., the PD plot) does depend 
on the n xis, which have been sampled from f(x).  But 
it also depends on the n sis — doubly so because two 
independent random errors, each with standard 
deviation si, have been added to xi.  Its usefulness in 
practice will depend on whether it provides 
recognisable and useful information about f(x). 
   
There is a conspicuous lack of published theory about 
this. I've never seen a proper statistical study of PD 
plots, or even a reference to such a study — indeed I 
have never seen them advocated in a statistics 
journal. But there is some published research in 
statistics journals on how to estimate f(x). One result 
of this is that the data (yi, si) in general contain very 
little information about the shape of f(x). This is a 
warning against giving much credence to locations 
and relative heights of peaks in any estimate of f(x). I 
summarise this research below. 
   
My own experience from looking at PD plots, both 
with real and with simulated data, is that they are not 
uninformative but nor are they very informative, and 
their shape can be greatly affected by the sis. If we 
observed the same doses, but with different 
precisions, the curve can look very different. Often si 
tends to increase with yi. This alone will tend to 
produce a highly positively skewed curve with the 
highest peak or peaks near the left hand (lower dose) 
end. That is, one can often guess its general shape 
even without seeing any data. In general a high peak 
will be partly a result of several yis being close 
together but partly also a result of sis being relatively 

small. Conversely, if there are a substantial number 
of low-precision (large si) grains in the sample, as 
there often are, these will tend to smooth out the 
whole curve and dilute the information from the high 
precision grains. Examples of these effects in the 
context of fission track ages can be seen in Galbraith 
(1998). 
   
The force of these effects will of course be less if all 
or nearly all of the sis are small compared with 
differences between yis. In that case the distribution 
of yis will not differ greatly from that of the xis and a 
PD plot may be similar to a kernel density estimate 
(based on the xis) having the same average 
bandwidth. 
   
In the above model si is unrelated to xi. But usually in 
practice the standard error tends to increase with 
dose. Sometimes the relative standard error is 
approximately independent of the dose. Then 
equation (1) would apply better with (yi,si) equal to 
the estimate and standard error of the natural log of 
the dose.  But a PD plot of log doses would look very 
different in shape, and may have different numbers, 
locations and relative heights of peaks, compared to 
using a linear dose scale. Which scale should be used 
and why? 
 
Some pitfalls 
I don't think I have ever seen a paper where the 
author presents a PD plot and then comments that its 
shape may be reflecting the differing estimation 
errors rather than how the equivalent doses vary.  
Nearly always it is interpreted, implicitly or 
explicitly, in terms of which doses are predominant 
or indicated. This is understandable, because the 
graph invites one to do this, but it is misleading.  
Here are examples of possible pitfalls. 
 
• You draw a PD curve and find that it has a high 
peak near the left hand end at a dose that plausibly 
corresponds to the burial dose of that sample 
(perhaps inferred from other information). So you 
present the PD plot as if it were pointing to that as the 
burial dose, or as support for that value. There may 
well be some relation between where the highest 
peak occurs and the burial dose — it may even agree 
closely sometimes — but it is not a reliable one.  
Often the PD curve is likely to have its highest peak 
near the left end simply because of the scale on 
which it is drawn and the nature of the error 
distributions.  Sometimes also the burial dose may be 
reflected in only a minority of grains, and may not 
appear as a peak at all. 
 
• In the previous scenario you might argue that in this 
case the PD graph gives the ―right‖ answer, so it is 
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useful here. How do you know it is the right answer? 
Presumably from some other information. Then what 
use is the PD plot? It's not good enough that the 
location of a peak in a PD plot might sometimes 
agree with the burial dose. As Lewis Carroll 
famously wrote, a stopped clock is right twice every 
day. A better approach would be to say ―The PD 
graph suggests such and such. How can I investigate 
that hypothesis more seriously?‖ 
 
• You look at the grains sitting under a peak of the 
PD curve and use these to estimate the burial dose, or 
some dose of interest. Or likewise, you use grains 
under different peaks to estimate different mixture 
components and their standard errors. This is like a 
so-called ―classification‖ method of estimating 
mixture components. Such methods are known to be 
biased — sometimes very biased — and to provide 
unreliable standard errors.  Fortunately there are 
more reliable methods available, such as maximum 
likelihood estimation. 
     
• Among lots of information and data in a paper are 
several PD plots, and a commentary that refers to 
these to support the discussion of some phenomenon 
or theory of interest.  The proposed theory may well 
be right, but logic tells us that if a PD plot does not 
reliably estimate the true dose distribution (which it 
does not) then those graphs do not support the theory. 
   
An important aspect of this is that even if the writer is 
able to avoid such pitfalls, it may still be hard for 
readers to do so. 
 
How can we get a picture of f(x)? 
Suppose we have the scenario given by equation (1) 
and we want to estimate the function f(x). A PD plot 
will not do this, so how can we do it? There are two 
general statistical approaches: parametric and non-
parametric. The central age and minimum age models 
are examples of parametric methods. These assume a 
specific form for f(x), but with unknown parameters 
that represent quantities of interest which are then 
estimated from the data. The idea of using a non-
parametric method is to see if the data can tell us 
what shape f(x) has without imposing a particular 
form. 
   
There has been some research on this. An important 
general result is that the data (yi,si) contain a very 
limited amount of information about the shape of 
f(x), as opposed to its location and dispersion (e.g., 
Goutis, 1996; Madger and Zeger, 1996; Wand and 
Jones, 1995, p160).  The same data can easily arise 
from quite different f(x)s.  
  

Several methods have been suggested. One is the 
―non-parametric maximum likelihood estimate‖ 
(NPMLE). This turns out to yield a discrete 
probability distribution concentrated on a relatively 
small number of values — that is, it estimates f(x) as 
a set of k different values and their probabilities, 
where k is quite small compared with n (Laird 1978).  
When f(x) is assumed to be continuous it is arguable 
that it would be nice if the estimate of f(x) were also 
continuous. To this end Madger and Zeger (1996) 
proposed a smoothed version of the NPMLE (called 
SNPMLE). This assumes that f(x) is a mixture of k 
Gaussian distributions (where k is unknown) each 
having a standard deviation greater than or equal to 
some known value b. The thinking behind this is that 
you can produce a wide variety of different shapes by 
mixing enough Gaussian distributions in differing 
proportions. The condition on the standard deviations 
is necessary in order to guarantee convergence to a 
solution. You could call it a semi-parametric method.  
The SNPMLE converges to a mixture (with differing 
mixing proportions) where, again, k is relatively 
small and all components of this mixture have the 
same standard deviation, equal to b. The value of b is 
chosen empirically to achieve a desired amount of 
smoothing, like a bandwidth of a kernel density 
estimate — the larger b is, the smoother the graph.  
Other methods have been proposed by Goutis (1996) 
and Newton (2002). These methods are all 
computationally intensive to implement.  More recent 
work includes Delaigle and Meister (2008), 
Staudenmeyer et al. (2008) and Wang et al. 
(submitted) so theoretical progress is being made in 
this area. 
 
The general message seems to be: it is hard to infer 
the shape of an underlying distribution when 
observations from it have added errors, even when 
these errors have known standard deviations.  A more 
fruitful approach might be to ask: what specific 
features of f(x) do we really want to know? Then try 
to ascertain these by appropriate statistical modelling. 
 
Improving a histogram 
To help interpret a histogram of single grain 
equivalent doses, Roberts and Galbraith (in press) 
suggest adding a scatter plot of si against yi. This is 
illustrated in Figure 1 for a sample of 82 single quartz 
grains. Olley et al. (2004) reported that these grains 
were transported by wind on to the bed of Lake St. 
Mary (in semi-arid south-eastern Australia) within 
the last 40 years. Many of the observed equivalent 
doses are close to zero and some are negative. 
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Figure 1: Histogram and scatter plot of equivalent 
doses for 82 grains of aeolian quartz (sample SM15 
from Olley et al., (2004). 
 
The histogram has a positively skewed shape for 
doses below 1 Gy and three more extreme values 
around 2 and 3 Gy. The scatter plot shows that 
several grains have standard errors greater than 0.5 
Gy, which is quite large compared with differences 
between the dose estimates, and two of the extreme 
values have standard errors greater than 1 Gy, so 
could, in principle be consistent with the values for 
some of the lower dose grains. It must be emphasised 
that this graph is simply a plot of the raw data; the 
histogram in particular is a summary of the yis and 
should not be interpreted as a graph of the xis. The 
scatter plot helps with this by drawing attention to the 
si associated with each yi. In fact the histogram is 
better viewed as an adjunct to the (yi, si) scatter plot, 
showing the marginal distribution of yi, rather than 
the other way round. 
   
This example is presented here simply to illustrate 
the method. It is unusual in having several negative 
and near-zero equivalent doses; but their presence 
serves to remind us that the yis are not the xis (the true 
doses) but just estimates of them. For example, the 
smallest yi is –0.35 Gy. Because xi cannot be 
negative, we can deduce that this yi underestimates its 
xi by at least 0.35 Gy. The si for this grain is 0.45 Gy, 
indicating that its xi could still be as large or larger 
than –0.35 + 2  0.45 = 0.55 Gy. In general, a 
histogram of yis need not look like a histogram of the 
corresponding xis. 
   
Graphs like Figure 1 were used, in conjunction with 
radial plots, by Arnold et al. (2009) to compare a 
number of samples of differing origin. We found the  

 
 
Figure 2. Radial plot of the data in Figure 1. The two 
grains with very imprecise equivalent doses near 2 
Gy are plotted as filled circles (the points almost 
coincide). 
 
scatter plot useful for revealing the relationship 
between si and yi. Sometimes there was a strong 
positive correlation, indicative of multiplicative 
errors, and other times there was little or no 
correlation (especially for small yi, such as in Figure 
1 here) suggesting that the main sources of error were 
additive. My co-authors also found the histograms 
useful for indicating some general characteristics of 
the sample. 
 
Figure 2 shows a radial plot of the same data. This 
uses a linear dose scale rather than the usual log 
scale, the latter not being possible with negative 
estimates. It is not easy to draw this scale in such a 
way as to accommodate the three extreme values and 
at the same time to show the rest of the data in detail.  
Here I have drawn it so as to see the main data 
clearly; and radii through the three values greater 2 
Gy go off the De scale. The two values near 2 Gy are 
seen here to be almost completely uninformative — 
you hardly notice them — and the vast majority of 
points (all but about 10) are consistent with having 
zero dose. 
 
In this example the information in the radial plot is so 
clear that very little further analysis is necessary. 
Possible further analysis might be to try to ascertain 
whether the burial dose is actually zero or some 
positive value close to zero and perhaps calculate an 
upper confidence limit for it.  This would require 
proper statistical modelling. In fact Olley et al. 
(2004) estimated a burial dose of 0.1 Gy with a 
confidence interval that included 0 Gy. 
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Figure 3. An alternative radial plot of the data in 
Figure 1 using the modified log transformation  d = 
log(De + 1). The two De values near 2 Gy are again 
plotted as filled circles. 
 
For data containing zero or negative estimates, an 
alternative to using a linear dose scale is to use a 
modified log transformation given by d = log(De + a)  
for some suitable a. That is, add a Gy to each 
observed dose and then take logs.  The standard error 
of d is then approximately se(De)/(De + a).  Figure 3 
illustrates this method for a = 1. The dose scale is 
now non-linear, calculated from the formula De = ed – 
a, and there is no difficulty in including the extreme 
values on it. 
 
The message from Figure 3 is very similar to that 
from Figure 2. It looks a bit different because the 
estimates are plotted with respect to relative, rather 
than absolute, standard errors; in particular, the three 
extreme values are more prominent. This method is 
useful when the data contain some near zero doses 
and some larger ones. 
  
Choice of bin width 
A reviewer raised the question of what bin width to 
use for the histogram, particularly in relation to 
consistency of presentation and also whether the 
standard errors should be used to determine it. 
   
In Figure 1 I have used bins of width 0.2 Gy, located 
so that 0 Gy comes in the middle of a bin (and 
consequently, so do 1, 2 and 3 Gy). A reasonable 
alternative would be to have 0 Gy at the edge of a 
bin. General guidelines tell us to use smaller bins for 
larger sample sizes and to try to achieve a reasonable 
amount of smoothing without losing too much detail, 
but there is no hard and fast rule. It is helpful to use 

friendly values; 0.2 Gy is better than 0.23 Gy, say. If 
I had used 0.1 Gy there would be twice the number of 
bins with smaller numbers in each, while 0.4 Gy 
would produce half the number of bins and more data 
pooled. Here 0.2 Gy seems about right. My personal 
preference is to err on the side of more bins rather 
than fewer, so as to reveal more of the raw data. 
     
A histogram does not have to have equal width bins 
of course. For very highly skewed data it is 
sometimes suggested to have wider bins in the tail 
(drawn so that the area of a rectangle, not its height, 
is proportional to the number of observations in the 
bin). But equal bin widths are easier to understand 
and are nearly always used for routine presentation. 
In Figure 1 it is much better to show the three large 
values in separate bins rather than combining them 
into one long bin. Incidentally, if you look at these 
actual doses in the scatter plot you can see that they 
do not fall in the middle of each bin; the histogram 
just tells you that the points are somewhere in the bin, 
not necessarily in the middle. 
   
What about consistency of presentation? In fission 
track analysis it is standard practice to measure about 
100 track lengths and present them in a histogram 
with 1 micron bins on a scale that goes from 0 to 20 
microns. This is possible because unannealed track 
lengths have a very tight distribution with mean 
about 16 microns and standard deviation about 1 
micron. You never see a track longer than 20 
microns. When tracks are heated they shorten and 
become more variable in length: the distribution 
shifts towards zero and becomes more dispersed and 
skewed. It tells us something about the thermal 
history that the grain has experienced. This 
consistency of presentation is a huge advantage and 
greatly outweighs other criteria for choosing bin 
widths. Many such histograms are shown in articles 
and at conferences and it is possible to compare 
them, not only within the same presentation, but also 
between different articles and talks, even in different 
journals and conferences. 
  
Is such a thing possible for equivalent dose 
distributions? I don't think so. Samples may have 
doses ranging between, say, 10 and 80 Gy. Using 0.2 
Gy bins there would do no smoothing at all.  Using 
bins of width 4 or 5 Gy might be reasonable there but 
would be useless for the data in Figure 1. But there is 
some scope for consistency of style, including axis 
labels and terminology. This is a matter for general 
discussion. Sometimes it may be useful to plot 
equivalent doses on a log scale, which raises further 
questions about style. OSL equivalent doses are far 
more complicated than fission track lengths! They are 
more like fission track ages, but more complicated 
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than them too. Fission track ages are routinely 
presented in radial plots but not in histograms. 
   
Should the sis be used to determine the bin width? 
No. The histogram is a graphical display of the 
observed doses (the yis). The standard error si tells us 
something about how close yi is likely to be to its xi, 
but this has nothing to do with choosing the bin width 
for a histogram of yis. If we had a larger sample size 
we would want smaller bins (regardless of the sis) to 
get a better summary of the data.  
 
This point serves to emphasise that a histogram of yis 
is not the same as a histogram of the xis and should 
not be seen as such. If the sis are all small compared 
with differences between xis then the two will be 
similar. If the sis are non-negligible, then all of the 
previous discussion and theory is telling us that we 
just don't have much information about the frequency 
distribution of xis. We have some information about 
its location and dispersion; which is what the central 
age model is extracting, and we can try to extract 
other information using parametric models such as 
the minimum age models.  There are non-parametric 
methods for estimating this frequency distribution but 
they do not yield either PD plots or histograms of yis. 
 
Summary 
When OSL equivalent doses are observed with non-
negligible and differing standard errors they are not 
easy to compare. A radial plot will display them 
informatively and without distorting their message. I 
recommend looking at a radial plot in addition to any 
other graphs that might be made. 
 
Research has shown that such data contain little 
information about the form of the underlying 
frequency distribution of true doses; quite different 
underlying distributions can easily give rise to the 
same observed data. Several methods have been 
suggested for trying to estimate such an underlying 
distribution, though little is known about how useful 
they are in practice. A question to consider is what 
use this frequency distribution would be if it were 
known. If only some of its features or parameters 
were of interest then a more fruitful approach might 
be to try to estimate these directly.  
   
A histogram of observed doses will reflect features of 
the single grain error distributions and the 
relationship between observed doses and their 
standard errors, as well as variation in true doses. In 
order to interpret it without pitfall it is necessary to 
add further information, such as an adjacent scatter 
plot of standard errors against doses. Together these 
can provide a useful description of the data, but will 

typically not provide a true picture of the underlying 
dose distribution. 
  
PD plots also depend on the error distributions and 
their relationship with dose — more so than 
histograms because effectively two independent 
errors are added to each true dose.  There appears to 
be no rationale or justification for them in the 
statistics literature. They too do not provide an 
estimate of the underlying dose distribution.  All you 
can really do with them is look and see where peaks 
occur. These may or may not reflect features of the 
true dose distribution, which in turn may or may not 
reflect events in nature. 
   
Perhaps their biggest difficulty, though, is that it is 
hard to avoid the types of pitfalls mentioned above. 
The reader is faced with a continuous curve that 
looks meaningful; but it does not mean what it 
appears to mean and there is no reliable way to 
extract what we want from it. Someone once said that 
Wagner's music is better than it sounds. Indeed it 
may be. But PD plots are not as good as they look. I 
don't recommend them. 
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