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Abstract 
Central to all aspects of application of SAR (Single-
Aliquot-Regenerative-dose) procedures to dating is 
the accurate estimation of errors in equivalent dose 
values (De). Some approximation approaches have 
been outlined by others. Here a more rigorous 
approach is outlined that incorporates the 
contributions to the total error in De from not only 
error in L0/T0 (undosed and unbleached ratio) and the 
contribution from the scatter of data about the best-fit 
curve, but also contributions from errors in the best-
fit regression parameters and from their covariances. 
Unequal weighting of data points is included.  
Algorithms and procedures are detailed for two 
[saturating exponential (E), and saturating 
exponential-plus-linear (E+L)] of the 4 most common 
dose-response models [which include linear (L) and 
quadratic (Q)]. Computed De values and errors are 
compared for 6 new and three previously published 
data sets, using the approach of this paper and two of 
the approaches of Duller (2007). Differences in De 
and its error estimate from these comparisons are 
often, but not always, small and insignificant, thus 
indicating that errors in best-fit parameters and their 
covariances make a small contribution to total error 
in De in most situations. One example data set 
evaluates the effects of dose-point spacing on the 
estimated De error. 
 
Introduction 
As in Duller (2007), Berger (1990, hereinafter "B90") 
and Berger et al. (1987, hereinafter, "BLK87"), and 
some other authors (e.g., Grün and Rhodes, 1992), 
the error analyses presented herein are intended to 
capture the effects of random errors, not systematic 
errors. Discussions about the relative role of random 
and systematic errors in the construction of dose-
response curves (DRCs) for TL (thermo-
luminescence), ESR (electron spin resonance), and 
OSL (optically stimulated luminescence) data have 
been joined by many authors (e.g., BLK87; Grün and 
Rhodes, 1992; Grün and Packman, 1993; Hayes et 
al., 1998; Galbraith, 2002). In the case of SAR 

applications, low signals could lead to dominance of 
systematic errors whereas larger signals are expected 
to lead to dominance of random errors in L/T ratios 
(test-dose-normalized OSL in the SAR approach). 
 
The widely used Analyst software package that 
accompanies the Risø luminescence reader systems 
provides SAR De regression procedures for the L, Q, 
E and E+L DRC models. 
 
The De error estimation procedures of Analyst are 
summarized by Duller (2007). His procedure 
essentially combines in quadrature two components 
of the total analytical error in De: an interpolated-
range (L0/T0 ±error) effect, and the effect of scatter 
(Duller's equation 7) of L/T ratios about the best-fit 
curve. This interpolated-range procedure is adopted 
here in the E+L regression model.  Duller's (2007) 
approach does not capture the effects of errors in the 
fitting parameters, nor any effects of covariances 
among the errors in these parameters.  His approach 
does, however (Duller, pers. comm., 2010) 
incorporate the effects of assigning unequal weights 
to the data points, where weighting is by inverse 
variance of the estimated absolute errors in L/T 
ratios. 
 
The importance of weighting in regression and error 
analysis has been emphasized and discussed 
elsewhere (e.g., BLK87; B90; Grün and Rhodes, 
1992; Grün and Packman, 1993; Hayes et al., 1998) 
with regard to constructing DRCs for extrapolation to 
De values (in TL and ESR dating). For such 
extrapolated regressions, Hayes et al. (1998) point 
out that Bluszcz (1988) discussed how to deal (using 
the Monte Carlo approach) with TL/ESR cases of 
mixed error types (e.g., combinations of constant 
absolute errors, variable absolute errors, constant 
relative errors).  The above cited authors point out 
(implicitly or explicitly) that dominance by 
systematic errors implies constant absolute errors, 
while dominance by random errors can imply 
constant relative errors. Grün and Rhodes (1992) 
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conclude that the effects of constant relative errors 
can be captured by use of weighting by inverse 
variance, and that this choice leads to smaller errors 
in estimated De values from extrapolated saturating-
exponential (hereinafter, 'E fit') TL/ESR DRCs than 
does the use of equal weighting, which captures the 
effects of constant absolute errors. This conclusion of 
Grün and Rhodes (1992) supports the choice of 
BLK87 for the use of weighting by inverse variance 
in the calculation of De errors from extrapolated 
DRCs. 
 
While the above efforts concerned extrapolation of 
DRCs, SAR employs interpolation (as does the 
regeneration TL procedure). Therefore, estimation of 
errors in SAR De values may have a different 
dependency on the germane empirical factors than in 
the case of extrapolations. With SAR, because of the 
nature of the measurement of L/T ratios, estimation 
of variance in each SAR dose-data point is quite 
tractable (e.g., Galbraith, 2002). Thus use of 
weighting by inverse variance of L/T ratios as 
presented in this paper is straightforward, avoiding 
the kinds of uncertainties embedded with the 
measurement of (for example) TL signals (e.g., 
BLK87, Appendix A). 
 
Here the mathematical procedures of BLK87 and 
B90 are adapted to the SAR conditions. BLK87 and 
B90 used the Gauss-Newton method of linearization 
of the mathematically non-linear E and E+L models 
to obtain fitting parameters, and the 'delta' method to 
obtain error estimates in the extrapolated De values. 
The procedures of BLK87 are statistically accurate 
when relative errors in the data points are small (e.g., 
<5%). 
 
Results from these adapted procedures are compared 
below to the results from the two error-estimation 
approaches of Duller (2007) as executed in Analyst 
2007 (v.3.24): his 'curve-fitting' and Monte Carlo 
approaches. His 'curve-fitting' approach captures the 
effects mentioned above (error in L0/T0, unequal 
weighting, data scatter about the DRC). His Monte 
Carlo approach presumably captures the end effects 
of all empirical variables. As Duller (2007) reminds 
us, when L0/T0 is near the saturation value of E fits, 
the error in De, likely will not be symmetrical. In this 
situation, only the Monte Carlo approach may yield a 
statistically accurate estimate of the error in De. To 
construct the best-fit DRCs, Duller (2007) employed 
the Levenberg-Marquardt (L-M) algorithm. This has 
many advantages (e.g., Press et al., 1986; Hayes et 
al., 1998), not the least of which can be speed of 
convergence for mathematically non-linear models.  
Essentially then, the algorithms of this paper employ 
weighting of L/T ratios by inverse variance of same, 

and, moving beyond the approach of Duller (2007), 
capture the effects of errors and covariances in fitting 
parameters.   
 
Although the models presented below force the dose-
response curve through the origin, they could be 
modified to permit passing the regression through the 
recuperation datum. The 'curve-fitting' procedure of 
Duller (2007) passes the regression curve through the 
recuperation datum, but his Analyst software permits 
the choice of forcing the curve through the origin. 
Since one of the data-acceptance criteria (e.g., Wintle 
and Murray, 2006) in the use of SAR is the rejection 
of data for which the recuperation is >1σ or >2σ from 
zero, forcing the curve through the origin is likely to 
be usefully accurate in almost all SAR situations. 
Furthermore, it has been demonstrated empirically 
(e.g., Ballarini et al., 2007; Berger, 2009; Berger et 
al., 2010; Cunningham and Wallinga, 2010) that 
placing the interval selected for 'background' 
subtraction close to the beginning part of the OSL 
decay curve, rather than at the end, often has the 
effect of reducing the recuperation signal to near 
zero. 
 
Some Nomenclature 
The following terms are employed: σ2 = absolute-
error variance; N = number of L/T (hereinafter, "y") 
data points, including the origin; w = weight, which 
for SAR is 1/σy

2;  y0 = L0/T0 ;  θ = a fitting parameter 
(e.g., a, b, or c below);  scalar VAR = weighted sum 
of squares of residuals (an estimate of the scatter of 
data about the best-fit curve). Note that σy

2 can be 
calculated appropriately by the method of Galbraith 
(2002). Symmetrical matrix SIG is the matrix Ψ of 
equation 10 in BLK87 and of equation 4 in B90; and 
 
 SIG = VAR·(I)-1    (1) 
 
That is, SIG is the product of scalar VAR and the 
inverse matrix of I. Matrix I is the information matrix 
of BLK87, and thus SIG is the variance-covariance 
matrix, or error matrix.  The diagonal elements of 
SIG give the variances in the individual fitting 
parameters, while the off-diagonal elements give the 
covariances. 
 
Employed throughout this paper is the standard 
propagation-of-variance equation 
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where f is the model function for the curve, and the 
paired terms provide the variances when k = s and the 
covariances when k ≠ s. The covariance terms can be 
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ignored (set to zero) only if the errors in the fitting 
parameters are independently distributed 
(independent of each other) and symmetrical with 
respect to positive and negative values. We assume 
here that these errors are Gaussian (although this 
assumption is not required in the approach of 
BLK87), hence symmetrical, but we cannot assume 
independence of errors in fitting parameters. 
However, it is assumed realistically that the error in 
y0 is independent of the errors in the fitting 
parameters. Note that hereinafter, the subscript "i" 
will be used for summations over the non-zero dose-
axis (x) data points.  
 
The elements of the matrix I (when needed below) 
are derived from equation 11 of BLK87,   which 
reduces to 
 

           
 

  
 

     

   
  

     

   
      (3) 

 
Linear Fit 
This model, a linear dose response curve passing 
through the origin, applies to many young sediments 
or heated materials. Realistically we assume that 
there are errors in y, not in x. Using the weighted 
least-squares principle, we wish to minimize  
 
  S =           

 
     (4) 

 
where f = bx.  Deming's (1964) equation 39 (p. 33) 
provides a straightforward form of S that circumvents 
the need to know b beforehand, and his equation 34 
(p.31) permits easy calculation of slope b. 
 
Inclusion of the effects of scatter of data about the 
best-fit curve is required. Deming's (1964) equation 
41 (p.34) provides a simple formulation of σb

2 that 
includes the data-scatter effect, which he terms the 
'external standard error' in b.  In our nomenclature, 
his divisor m-1 in this equation is N-2.  Thus, the 
total variance in De is 
 

     

     
   

  

 
     

   

  
      (5) 

 
Here we assume realistically that there is no 
covariance of y0 and b, that is, that the errors in y0 
and b are independent. 
 
Quadratic Fit 
This model applies to young sediments for which the 
dose response curve is supralinear (e.g., Berger, 
1987) or to dose response curves that are slightly 
sublinear.  As BLK87 show, in the low dose region 
of a dose response, a second-order polynomial can be 

a good approximation to the physically realistic 
saturating exponential.  The Q model is  
 
  f = bx + cx2      (6) 
 
and we wish to minimize equation 4 to obtain 
estimates of b and c.  
 
We use the matrix normal equations, simplified to the 
case of only one curve (not the intersection of two 
curves as in BLK87). Then in the case of unequal 
weights, the coefficients b and c are calculated from 
equation 2 of BLK87. Following the procedural steps 
of BLK87, we iterate the calculation of b and c until 
the difference between successive estimates meets 
some pre-set convergence limit. The De value is the 
absolute value of the solution to equation 6 when f is 
replaced by y0 and x is replaced by De. 
 
To obtain the errors in b and c, we need scalar VAR 
and matrix I from equation 1.  Then    
 

 VAR = 
          

 
 

   
    (7) 

 
with denominator N-3 because there are only two 
fitting parameters. From equation 3, the elements of 
matrix I are   Ibb =      

 
 ,    Icc =      

 
 ,    Ibc = 

Icb =      
 

  . Here, the covariances (off-diagonal 
elements) are not zero because the errors in b and c 
are not independently distributed. Therefore, using 
equations 1 and 7, we obtain the elements SIGbb, 
SIGcc and SIGbc of the error matrix SIG. 
 
The total variance in De follows from equation 2 as 
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where we assume reasonably that the error in y0 is 
independent of the errors in b and c. Therefore, 
applying equation 8 to the analytic formula for De 
(solution to equation 6), equation 8 becomes 
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where Z = |b2-4c(-y0)|. 
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Saturating Exponential (E) 
This model has the most general applicability to 
charge-trap physical processes, for which trap-type 
filling at high doses can occur.  The model is 
 
  f = a(1-e-bx)      (10) 
 
and we wish to minimize equation 4 to obtain 
estimates of parameters a and b.  From equation 10,        
 

De = 
 

 
   

 

    
        (11) 

 
since f = y0 when  x = De.  
 
Regression to obtain a and b 
We use the matrix methods and follow the steps of 
BLK87. The suggested procedure of BLK87 begins 
with obtaining initial (trial) estimates of a and b by 
setting the weight matrix = 1 and using a quadratic 
form of the dose-response curve. This step gives 
initial estimates  of a and b. 
  
Then using estimated (calculated) weights, we find 
increments to a and b using equation 9 of BLK87.  In 
practice, equation 9 can be reformulated (BLK87 
matrix symbol β replaced here by matrix symbol ΔA) 
to: 
    
                                (12) 
 
where the matrix elements are: 
 wua =              ,     

wub =     
        ,  

wy* =                  .   
 
Equation 12 is iterated to the desired level of 
convergence of a and b. Then De is calculated from 
equation 11. 
 
Error in De 
We use equation 2, with the De from equation 11 
replacing f in equation 2. Thus the variance in De is 
calculated from equation 8 (with b, c replaced by a, b 
respectively). Using equation 10, we obtain the 
elements of I: 
Iaa =     ,     
Ibb =        

      
 ,      

Iab = Iba =       
    

  
 
Elements of SIG are obtained from equation 1. Using 
equation 11 for De, the partial derivatives in equation 
8 become: 
 

   

   
          

  ,     
   

  
                 and  

   

  
        .  

 
These results then permit the calculation of the 
variance in De. 
 
Saturating Exponential Plus Linear (E+L) 
This model, as stated by B90, is physically realistic 
when charge-trap creation occurs at high doses.  The 
linear term can represent the trap-type creation region 
of the dose response curve. Dose response curves 
with apparent linear growth superimposed upon a 
saturating exponential growth have been observed 
under laboratory irradiations in TL dating (e.g., B90) 
and quartz SAR OSL dating (e.g., Murray et al., 
2008; Pawley et al., 2008). Does this E+L laboratory 
response of test-dose-normalized OSL require the 
assumption of E+L trap filling under natural 
irradiation (sediment burial) conditions?  
Notwithstanding this question, comparison of quartz 
SAR OSL age estimates derived from use of an E+L 
dose response curve model with independent ages 
have shown good agreement at ~ 200 ka (Seyda 
River sites, Murray et al., 2008) and at ~ 450 ka 
(Pawley et al., 2008). On the other hand, Lai (2010) 
reported dramatic age under-estimation for old loess 
when E+L dose response curves were observed. 
Could this under-estimation be partly an effect of 
differences in his SAR procedure from those of 
others (e.g., Murray and Wintle, 2003)? 
 
There is another physically realistic model that can 
mimic an apparent E+L dose response curve in SAR, 
and this is the 'double-saturating-exponential' (DSE) 
model (e.g., Wintle and Murray, 2006). Here the 
apparent linear term can manifest a second set of 
charge traps with a different (larger) saturation level 
than the first type. Murray et al. (2007) employed this 
model with SAR data for quartz from their Sula River 
sites, but obtained age underestimates. Murray et al. 
(2008) discussed this result, and suggested that 
perhaps the nature of the geological setting at Sula 
River and of the independent age assignments might 
have had more influence on this underestimate than 
any putative instability in the quartz SAR signal from 
the high-dose region of the dose response curve. 
However, in this report only the E+L model is 
considered for error analysis because this model is 
much more tractable than the DSE model. 
The model is      
 
f = a(1-e-bx) + cx        (13)  
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A straightforward, efficient and acceptably accurate 
path to follow is to use equation 13 to obtain a, b, c, 
VAR and SIG, then to use 
 
f ' = y0 -a(1-e-bx) -cx       (14) 
 
to solve for De, because  f ' = 0 when x = De.  
Equation 14 can be solved for De very efficiently by 
using the Newton-Raphson iterative procedure (e.g., 
McCalla, 1967).   
 
Regression to obtain a, b, c 
As for the E case, we use the quadratic model with 
weights = 1 to obtain initial estimates of a and b.  
Then we assign an initial estimate for c of (e.g.) 
0.005, based on the likely general increase in L/T as a 
fraction of applied dose in units of sec. With these 
initial estimates of a, b and c, we use equation 12 to 
begin the iterative process to refine these estimates 
toward some limit of convergence. In this case, the 
elements of matrices WU and WY* become:    
 
wua =              ,      

wub =      
         ,   

wuc =       ,   and     

wy* =                        . 
 
Solution for De and error in De 
Once we have a, b and c, we can use equations 14 to 
iteratively solve for De. Here, the estimation of errors 
in De is more complex than for the previous models. 
An efficient, fast and reasonably accurate procedure 
is to approximate the total variance in De as  
  
   

      
          

       (15) 
  
which is the sum of variances from the effect on De 
of error in y0 and the variance arising from the 
combination of the effects of data scatter about the 
best-fit curve with the variances and covariances in 
the fitting parameters a, b and c. 
 
Error in De arising from error in y0 
An historically effective way (and used by Duller, 
2007) to estimate the component of variance in De 
that relates to the effects of the variance in y0 is to 
iterate the solution of equation 14 under 3 conditions: 

(i) set  y0' = y0 +    
, obtain De' ;    

(ii) set  y0" = y0 -    
, obtain De" ; 

and  (iii)        set y0' = y0, obtain the best-fit De. 
 
Although    

      may not always be symmetrical 
about De, it is acceptable to set     

 
   

          
      

   /2]2      (16) 

 
 
Error in De arising from data scatter and from errors 
in a, b and c 
For this purpose we can use the efficient equation 4 
of B90 (with his Ψ replaced by our SIG), which 
captures all the effects we wish to incorporate.   Then 
in that equation 4, 

Vt   =    
  

  
 
  

  
 
  

  
   

=                    ,   and    
  

   
          .  

 
For use in equation 1 we need    

VAR =  
         

 

        
 
where fi is given by equation 13.  The elements of I, 
derived using equation 3, are: 
 
Iaa =              

  ,      
Ibb =         

      
  ,      

Icc =      
 

  , 
Iab = Iba =        

               , 
Iac = Ica =                 , 
Ibc = Icb =       

      
  . 

 
Therefore, with these equations for the elements of 
matrix I and the equation for VAR, we obtain    

     
from equation 4 of B90 and the total variance in De 
from equation 15 combined with equation 16. 
 
Comparison of Results from Data Sets 
Results from 3 error-estimation approaches are 
compared below. The first two approaches are the 
'curve-fitting' and Monte Carlo routines of Duller 
(2007) outlined in the first section and executed in 
Analyst 2007, and the third is the approach outlined 
in this paper.   
 
Duller's data sets 
Table 1 lists comparisons of the De and errors for 3 of 
Duller's (2007) multi-grain SAR data sets. Duller's 
(2007) data set D-4 illustrates a linear (L) regression, 
and the other two, a saturating exponential (E) 
(samples D-1 and D-2). The E data sets of Duller 
(2007) are only somewhat sublinear. There is no 
significant  difference  in  error  estimates (within 1σ) 
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Sample Model Equivalent Dose (Gy) 

Curve Fitting Monte Carloa This paper 

D-4 L 0.71 ± 0.11 ± 0.13(Sym) 0.73 ± 0.11 

D-1 E 0.70 ± 0.06 ± 0.06(Sym) 0.698 ± 0.058 

D-2 E 28.50 ± 0.67 ± 0.75(Sym) 28.48 ± 0.68 

a 1000 repeats were used. 'Sym' means that the De distribution is symmetric. Only the uncertainties are reported because the De estimates are those 
from the curve-fitting scheme 
 
Table 1:  Comparison of equivalent dose values, and 1σ uncertainties, for 3 data sets from Duller (2007). 
 
 
 
 
 
Sample FUS-1 (1-70) a FUS-1 (2-20) FUS-1 (4-40)  SFC-6 (A-10) SFC-6 (A-15)  ATP-37 (A-1) 

Dose (s) L/T L/T L/T Dose (s) L/T L/T Dose (s) L/T 

Natural 1.390 ± 0.378 1.261 ± 0.383 1.703 ± 0.538 Natural 4.957 ± 0.208 2.671 ± 0.212 Natural 4.500 ± 0.107 

100 0.091 ± 0.110 0.324 ± 0.139 0.200 ± 0.234 100 1.109 ± 0.053 1.146 ± 0.107 150 0.814 ± 0.021 

300 0.352 ± 0.127 0.900 ± 0.455 0.750 ± 0.322 250 2.129 ± 0.092 2.023 ± 0.195 300 1.379 ± 0.034 

1000 1.452 ± 0.483 1.909 ± 0.796 1.783 ± 0.649 500 3.278 ± 0.137 2.165 ± 0.178 700 2.360 ± 0.057 

0 -0.036 ± 0.037 -0.074 ± 0.057 0.001 ± 0.001 1000 4.306 ± 0.172 3.420 ± 0.288 1200 3.209 ± 0.077 

Recycle 1.0 ± 1.6 1.01 ± 0.58 2.4 ± 3.0 2000 5.592 ± 0.226 3.390 ± 0.269 2000 3.925 ± 0.094 

    0 -0.023 ± 0.012 -0.022 ± 0.024 2800 4.558 ± 0.108 

    Recycle 0.87 ± 0.06 1.07 ± 0.14 3600 4.853 ± 0.114 

       4200 5.091 ± 0.120 

       5000 5.441 ± 0.128 

       5800 5.737 ± 0.135 

       7000 6.102 ± 0.143 

       0 0.005 ± 0.002 

       Recycle 0.88 ± 0.03 

 
a   In parenthesis, either the 'single'-grain hole (e.g., disc 1, hole 70) or the multi-grain aliquot number. The recycle ratio is for the first applied 
dose. The FUS and SFC samples are quartz sand grains (respectively, 125-185 µm and 105-212 µm). The ATP-37 sample is 4-11 µm quartz. 
 
Note:  Most L/T errors in this table are listed with a precision of 3 significant digits even though it is well known that most data error estimates 
themselves have uncertainties typically of 10-30% (e.g., Topping, 1962, p. 89-90). The retention of 3 significant digits is intended to minimize 
any effects of round-off error for those users who wish to employ these data in comparisons of results from their own models with the models in 
this paper. These L/T ratios are from the screen display of Analyst, which truncates errors to the third decimal place. Note also that the absolute 
errors in the ATP-37 L/T ratios yield approximately constant relative errors (~2.5%). 
 
 
Table 2: Example data for regression models 
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Figure 1: Top to bottom, Q, E and Q regressions 
using the routines of this paper for the 'single-grain' 
FUS-1 data in Table 2. The percent relative error in 
each L/T ratio is shown. 
 
among the 3 approaches for the samples D-4, D-1, 
and D-2. For these data, the fitting parameters (not 
shown) generated by Analyst 2007 and by the author's 
routines do not differ by more than a small fraction of 
the 1σ uncertainties in these parameters. That is, the 
respective best-fit DRCs do not differ noticeably.  
 
Author's data sets 
The 6 data sets of the author listed in Table 2 
illustrate the use of the Q, E and E+L models. Unlike 
in Duller's (2007) examples, the dose points in Table 
2 are in seconds, not Gy. Other distinctions are in the 
footnotes to Table 2. The data for the first 3 examples  

 
Figure 2: Comparison of E and E+L best-fit DRCs 
for sample ATP-37. 
 
represent SAR conditions for which the relative 
errors in the L/T ratios are much larger than those in 
the data sets of Duller (2007). These larger errors 
manifest the effects of low signals, and so it is likely 
that the role of systematic errors is larger than would 
otherwise be the case. Furthermore, these 3 data sets 
were selected because the scatter of the data about the 
best-fit DRCs is very small while the absolute and 
relative errors in the L/T ratios are very large. 
Finally, the corresponding fitting parameters have 
very large relative errors (as estimated by Analyst 
2007). 
 
The data (excluding recycle and recuperation points) 
for the 3 different grains of the FUS-1 sample are 
plotted in Fig. 1, with best-fit regressions of the Q 
(top), E (middle), and Q (bottom) models.  The best-
fit DRCs of Analyst 2007 and of the author do not 
differ on the scale of these plots.  All data have large 
relative errors. The relative errors in the L0/T0 ratios 
are comparable in all 3 plots. The relative errors in 
the dose response curve data in the top and bottom 
plots are comparable, but differ from those in the 
middle plot. Examples of single-grain data having 
similarly large relative errors but with more 
variability  within  the  dose   response   curve   could  
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Figure 3: Comparison of E and E+L best-fit DRCs 
for sample SFC-6. 
 
 
probably be found by the author and by readers, but 
these examples are sufficient to illustrate some 
differences in the results from the different error-
analyses schemes. The De and error results from 
FUS-1 are discussed below after presenting plots for 
the remaining data in Table 2. 
 
The multi-grain SAR data for the fine-silt (4-11 µm) 
quartz of sample ATP-37 are presented not only 
because they provide DRCs having a nearly 'linear' 
portion beyond a saturating exponential, but also to 
illustrate the effects on estimated errors in De values 
of variations in the spacing of dose points. The dose 
points for the ATP-37 data are approximately equally 
spaced beyond 1000 s. For extrapolated De 
estimation, the simulations of Grün and Rhodes 
(1992) showed that doubling of the dose-point 
spacing (as usually practiced by the author and by 
BLK87 and B90 for non-SAR data) was preferred to 
equal spacing of dose points because dose doubling 
led to smaller errors in the De values. However, it is 
not clear what the effects of different dose-point 
spacings might be on De values and errors calculated 
for SAR dose response curves (which employ 
interpolation for De estimation). From these ATP-37 

data, the dose-doubling scenario can be approximated 
by eliminating certain dose points in the regressions.  
 
The ATP-37 data for the complete dose range are 
plotted in the top of Fig. 2, with both E and E+L 
regressions illustrated. As for the FUS-1 data, the 
best-fit response curves of the author and of Analyst 
2007 are indistinguishable at the plotting scale (the 
fitting parameters agree within their first 3 digits). 
The bottom of Fig. 2 shows regressions for an 
approximate 'dose-doubling' scenario, over a 
truncated dose range (to 4.2 ks, rather than 7 ks). 
 
It is immediately clear in the top of Fig. 2 that the 
choice of regression model has a dramatic effect on 
the value of the estimated De and that the weighted E 
model is inappropriate. An equal-weighting 
(unweighted) E model has not been applied to these 
data, but it is not expected to provide an acceptable 
fit. In the lower Fig. 2, a De value could not be 
computed by either Analyst 2007's or the author's 
weighted E-fit routines, because the E fit saturates 
near the L0/T0 value. So in this example incomplete 
knowledge of the DRC could lead to rejection of the 
aliquot if only an E model were applied.  
 
The final example data set in Table 2 (sample SFC-6) 
is a dose-doubling set from a multi-grain dating 
experiment of the author.  The best-fit  dose  response 
curves are plotted in Fig. 3. Aliquot 10 (top) 
represents the form of the dose response for most of 
the 21 aliquots of this sample: apparently an E+L fit 
is most appropriate. Analyst 2007 provides a 'fit' 
(estimate of weighted sums of squares of residuals 
about the best-fit dose response) value of 0.0132 for 
the E+L model and 0.0959 (~ 7 times larger) for the 
E model. However, as is shown below, the 3 error-
estimation schemes report no statistical difference (at 
1σ) in the De values from these weighted E and E+L 
fits.  
 
Aliquot 15 (bottom, Fig. 3) was selected because not 
only do the data scatter more widely about the best-fit 
weighted regression dose response, but also the errors 
in the L/T ratios are much larger than for aliquot 10. 
In this case, to a first approximation, it could be 
acceptable to prefer the E+L model based on the 
assumption that all quartz in this sample should 
behave the same way. Generally, however, 
experience shows that quartz dose response curves 
can vary from grain to grain within a given sample. 
Therefore, if there are few grains per aliquot, one 
could expect inter-aliquot differences in dose 
response. 
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Sample a Model b Equivalent Dose (s) 
  Curve Fitting Monte Carlo c This paper 

FUS-1/1-70 Q 964±202 ±429(Sym) 963±204 

FUS-1/2-20 E 491±219 ±295(+Asym) 491±213 

FUS-1/4-40 Q 914±188 ±447(-Asym) 914±493 

ATP-37/A-1 E(long) 2104±219 ±170(Sym) 2104±128 

 E+L(long) 3057±227 ±262(Sym) 3056±262 

 E(short) sat'n - sat'n 

 E+L(short) 3095±185 ±224(Sym) 3092±251 

SFC-6/A-10 E 1417±769 ±171(Sym) d 1417±148 

 E+L 1489±162 ±213(Sym) 1487±172 

SFC-6/A-15 E 502±160 ±99(Sym) --  e 

 E+L 807±299 ±314(+Aysm) 806±441 

 
Notes: 
a:   'n-m' indicates 'single-grain' disc-hole number; 'A-n' indicates aliquot number. 
b:   For ATP-37, 'long' means 0-7 ks dose range, while 'short' means 0-4.2 ks. 
c: 'Sym' indicates a symmetrical distribution in De values, whereas '+Asym' denotes asymmetry (high-side 

skewness) and '-Asym' denotes low-side skewness. For multi-grain aliquots, 700 repeats are used, whereas 1000 
repeats are used for single-hole data. Analyst 2007 provides a ±1σ error from the Monte Carlo De distribution 
probably by fitting a Gaussian that is centered on the peak of the distribution's histogram. For an asymmetric 
distribution, this ±1σ error can be misleading. Only error estimates are reported (see footnote 'a', Table 1) 

d: Although symmetrical, the corresponding Monte Carlo distribution peak occurs at ~1200±~150(1σ) s, not 1417, 
and moreover,  only 58% of the repeats are fitted (~55% when 1000 repeats are selected). 

e:  Does not calculate. 
 
Table 3: Comparison of De ± 1σ results for the data in Table 2. 
 
 
 
The Analyst 2007 'fit' values (0.118 for the E model, 
0.112 for the E+L model) are probably effectively the 
same for aliquot 15. Thus even though it might 
appear in lower Fig. 3 that the E and E+L models 
provide distinctly different De values, the results in 
Table 3 below indicate that they do not differ at 1σ.  
Thus aliquot 15 is a good example of an ambiguous 
dose response curve that could provide misleading De 
values for a sediment sample containing mixed-age 
quartz grains. In light of the lessons from the plots in 
Fig. 2, SFC-6 provides an example of a sample for 
which a greater number of dose points should have 
been chosen, not necessarily evenly spaced. 
 
Comparison of De and errors for the Table 2 data 
sets 
The De and    

 values obtained from the regressions 
shown in Figs. 1, 2 and 3 are listed in Table 3, along 
with corresponding values from Duller's (2007) 
'curve fitting' and Monte Carlo procedures.   
 

The Q-fit error estimates for FUS-1(1-70) from 
Duller's 'curve-fitting' approach and the author's 
approach are indistinguishable. Although the relative 
errors in fitting parameters b and c estimated by 
Analyst 2007 are respectively ~50% and ~200%, this 
agreement between the two approaches implies that 
the contributions to the total error in De from errors in 
fitting parameters are negligible in this case. 
However, both De errors under-estimate the Monte 
Carlo error estimate by a factor of about two. Thus 
for such data (large relative errors, few dose points, 
little scatter about the best-fit DRC), one should 
always check the Monte Carlo result before accepting 
the error estimates from either of the other two 
approaches. 
 
With the E-fit DRC of FUS-1(2-20), the two smaller 
error estimates in De do not differ significantly and 
either of the estimates would imply that this 'grain' 
should be accepted (error estimates in De are <50%).  
The estimated relative errors in fitting parameters a 
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and b are ~100%. Thus the agreement of the De error 
(±219 s) from the 'curve-fitting' scheme with that 
(±213 s) from the author's scheme implies that the 
effect of errors in the fitting parameters on the total 
De error is negligible in this case also. Nevertheless, a 
visual inspection of the Monte Carlo De distribution 
suggests that a more accurate error estimate would be 

400
300491  s (1σ), and therefore that this 'grain' should 

be rejected.  Caveat emptor!  
 
The error estimates for the Q-fit FUS-1(4-40) also are 
instructive as to relative performance of the different 
error-estimation schemes.  While the Analyst 2007 Q-
fit estimate of ±188 s would imply that this De value 
should be accepted, the author's scheme produces a 
much larger estimate (±493 s), suggesting that a 
closer look at the data is required. Here the estimated 
relative errors in the fitting parameters b and c are 
respectively ~50% and ~200%, similar to those for 
example FUS-1(1-70).  Notwithstanding, the author's 
error estimate is much closer to the Monte Carlo 
symmetric estimate (±447 s) from Analyst2007, but 
even this fact is misleading because the Monte Carlo 
De histogram is highly asymmetric and dramatically 
skewed to smaller values (negative skewness). A 
visual inspection of this histogram suggests a more 
appropriate result of 150

350914
  s (1σ). Thus in this 

example, the Duller 'curve-fitting' error-estimation 
scheme under-performs, and the other two 
symmetric-error results (Monte Carlo and author's) 
schemes over-estimate the asymmetric, most-likely 
error estimates (+150, -350 s). 
 
The ATP-37 data set also offers some useful insights 
into relative performance of the 3 error-estimation 
schemes. The full-range ("long") dose E fits give 
identical De values (2104 s) but apparently different 
error estimates. From the graph (top Fig. 2) it is 
apparent that the weighted  E fits are not appropriate, 
and from Table 3 it is clear that the De values from 
the E+L model are significantly larger than the E-fit 
values (by ~50%). What is unexpected is the 
relatively small E-fit error estimate (±128 s) 
produced by the author's scheme. The Monte Carlo 
error estimate is near the middle of the range of 
errors produced by the schemes of the author and of 
Analyst 2007. These inter-scheme differences for the 
E model may reflect effects from the use of 
weighting, but that is a subtlety requiring more study 
(as suggested by the reviewer, perhaps using 
numerical simulations, e.g., Grün and Rhodes, 1992). 
Notwithstanding, the E+L model yields essentially 
identical results from the 3 approaches, with 
Analyst2007 giving a 15% (statistically perhaps 
insignificant) under-estimation of the error 
(compared to the Monte Carlo result). Is this apparent 

under-estimation a consequence of not capturing the 
contributions from the errors and covariances in the 
fitting parameters? Perhaps only model simulations 
could answer this question. 
 
Concerning the short-dose regressions, because the 
L0/T0 ratio is at or near the saturation value of the 
exponential fit, neither Analyst 2007 nor the author's 
scheme could calculate a De value from the E model. 
On the other hand, both schemes produced 
effectively identical De values from the use of the 
E+L model. Where they differ in this case is that 
again Analyst 2007's ‘curve-fitting’ scheme yields the 
lowest error estimate. Again, this may reflect the 
neglect of the contributions from the errors and 
covariances in the fitting parameters.  What is also 
helpful to notice is that any effect of changes in the 
dose-point spacing (compare top and bottom of Fig. 
2) on E+L results when the L0/T0 intersection is well 
within the 'linear' part of the dose response is not 
statistically resolvable with this data set. This 
suggests that with SAR, the type of dose-point 
spacing may not be a significant variable in the 
estimation of De and its error, as long as the scatter 
about the best-fit E+L DRC is small. 
 
The final data set (SFC-6) provides an example of 
dose responses for which a critical variable may be 
the number of dose points, not the spacing of same.  
Aliquot 10 of sample SFC-6 apparently yields 
essentially identical De values whether the E or E+L 
models are used. However, the error estimates from 
the use of the E model differ among the 3 schemes, 
and the Analyst 2007 E-fit Monte Carlo De histogram 
is anomalous (footnote 'd').  This Monte Carlo routine 
did not execute to completion (footnote 'd') so the 
asymmetric De histogram (peak at ~ 1200 s) provides 
no helpful information about what the statistically 
realistic De error should be. One could certainly 
expect an asymmetric Monte Carlo De distribution 
from this E-fit example, but a symmetric result is 
generated. The Analyst 2007 'curve-fitting' error 
estimate of ±769 s for this E fit would appear (from 
Fig. 3) to be a more reasonable error estimate than 
those from the other two approaches.  For aliquot 10, 
only the weighted E+L model yields general 
consistency among the 3 error-analysis schemes, and 
thus this model is preferred for this aliquot. 
 
As mentioned above, aliquot 15 was selected to 
represent a dose response having both a larger scatter 
of L/T ratios about the DRC and larger relative errors 
(about double) in the L/T ratios than those for aliquot 
10. Given the nearness of the L0/T0 ratio to the E-fit 
saturation and the paucity of the dose points, it is 
surprising how small the error estimates are from the 
Analyst 2007 'curve-fitting' and Monte Carlo 
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schemes. Neither seems realistic. On the other hand, 
all 3 schemes yield E+L model error estimates that 
overlap at 1σ with the E-fit De estimates. 
 
Notwithstanding, there are differences among the 
E+L error estimates, with the Analyst 2007  'curve-
fitting' providing the smallest estimate and the 
author's scheme, the largest. This largest estimate 
(±441) appears to reflect more accurately the large 
spread (at 2σ) of De values within the Monte Carlo 
histogram than does the 'curve-fitting' error estimate 
of Analyst 2007. However, only the Monte Carlo 
histogram for the E+L results from aliquot 15 appears 
to produce a realistic estimate in this case. In 
particular, this histogram suggests a De value of 

300
200807

  s (1σ).  Aliquot 15 yields somewhat 
ambiguous model results, and without obtaining 
additional dose points, it is acceptable (to a first 
approximation) to prefer the E+L model because that 
seems to be applicable to most of the other aliquots 
(not shown) from this sample. It is clear that the 
author's error-analysis scheme could lead to the 
rejection (De error >50%) of this aliquot, whereas the 
other schemes would not. 
 
Conclusions 
Duller's (2007) 'curve-fitting' approach to estimation 
of errors in SAR De values, executed in Analyst 2007 
software, does not capture the contributions from 
errors in the regression parameters nor from any 
covariances among the errors in these parameters. 
The author's error-analysis schemes do capture these 
contributions. However, comparisons of the 
computed De values and their error estimates from 
these two schemes applied to selected data sets 
generally show no statistically significant differences 
in error estimates except in special cases. 
 
Moreover, the Monte Carlo scheme executed in 
Analyst 2007 can in some cases indicate a De 
histogram peak at a value significantly different from 
the 'central De value' reported by Analyst 2007. 
 
Generally, however, for SAR data that have relatively 
small scatter about the best-fit dose-response curves 
and that have relative errors in L/T ratios smaller than 
~5%, there are no significant differences among the 3 
discussed schemes for analysis of L, Q, E and E+L 
models. 
 
Nevertheless, some data sets (some presented here) 
can generate misleading De and error estimates, and 
the practitioner of SAR dating should inspect such 
data sets carefully before accepting De and error 
estimates, no matter which error-analysis scheme is 
employed. 

Finally, one selected data set (ATP-37, Table 2) 
provides a good example of quartz SAR E+L dose 
response, and is used here to demonstrate that there is 
(in this case) little or no dependence of computed De 
values and their error estimates on dose-point spacing 
schemes, whether spaced evenly or by dose-doubling. 
This contrasts with the dose-point-spacing 
dependency shown by the simulations of Grün and 
Rhodes (1992) for non-SAR data (for which 
extrapolation is used). 
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