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Abstract 
Increasingly observed in single-aliquot regenerative 
dose (SAR) optically stimulated luminescence (OSL, 
also termed photon stimulated luminescence or PSL) 
dating studies of sedimentary quartz are dose 
response curves that at high doses are not satisfied by 
a single saturating exponential (SSE) regression 
model.  Commonly these can appear to be satisfied 
by a SSE+Linear (E+L) regression model, but some 
authors have proposed that a double saturating 
exponential (DSE) model would more closely fit the 
observed dose response curves (DRCs), especially in 
the region of highest applied doses. As error analysis 
for SAR equivalent dose (De) values derived from a 
DSE model is not yet available through the widely 
available Risø supplied software (Analyst), we 
present here a regression and error analysis scheme 
for DSE SAR data, and also a simple charge traffic 
model that generates approximate DSE dose 
responses. To illustrate results from our error 
analysis, we employ two SAR high dose data sets for 
fine-grain quartz, and compare graphically the SSE, 
E+L and DSE fits for each data set. These 
comparisons show clearly that such data are more 
closely fitted by a DSE regression than by the other 
two models.  This result, and the charge traffic 
model, lend validity to the physical reality of DSE 
regression models, and have implications for quartz 
SAR dating of older sediments.  
 
Introduction 
Recently there has been increasing interest in the use 
of the high dose part of quartz SAR DRCs to estimate 
burial ages from unheated sediments (e.g., Lowick 
and Preusser, 2011; Lowick et al., 2010a, 2010b; 
Murray et al., 2007, 2008; Pawley et al., 2008, 2010; 
Timar et al., 2010). Most of these reports are 
concerned with how to assess the accuracy of 
equivalent dose (De) values derived from such DRCs 
because some of the age estimates are lower than 
expected based on indirect, independent evidence.  
Although these studies considered several possible 
explanations for the observed age estimate 

discrepancies (e.g. validity of independent ages, 
accuracy and/or variation of estimates of past water 
concentration, soundness of SAR self-consistency 
tests), part of the discussion in these reports of high-
dose DRCs concerns the best-fit model, though the 
examples of age underestimations illustrated by, for 
example, Lowick and Preusser (2011) do not depend 
on the fitting model. 
 
Berger (2010) summarized several published reports 
of high dose TL (thermoluminescence) and SAR 
DRCs that appeared to be best fitted by an E+L 
regression model. Additional examples of high dose 
SAR DRCs that appeared to be best fitted by an E+L 
model are reported in chapter 5 of Bøtter-Jensen et al. 
(2003). All of these examples used relatively few 
dose points and did not extend the DRC to very high 
(many kGy) doses. Berger (2010) noted that some 
authors (Wintle and Murray, 2006; Murray et al., 
2007, 2008) considered that a DSE model would also 
fit their DRCs. Recently, Lowick and Preusser 
(2011), Lowick et al. (2010a), and Pawley et al. 
(2010) showed that a DSE model would fit some of 
their DRCs as well as an E+L model up to applied 
doses of ~1 kGy. These authors used the E+L model 
to calculate interpolated De values from the high dose 
region of the relevant DRCs because an interpolation 
and error analysis scheme for calculation of De values 
from a DSE model was not available to them. 
 
We present here a regression and error analysis 
scheme for DSE DRCs, as well as a simple charge 
traffic model that simulates DSE DRCs. The 
equations for our DSE regression and error analysis 
scheme are extensions of those of Berger (2010) for 
the E+L model. Using the nomenclature of Berger 
(2010), the DSE model is  
 
f = a(1-e-bx) + c(1-e-dx)     (1) 
 
where the second SSE could manifest a second set of 
charge traps having a different saturation level than 
the type of traps represented in the first SSE. The 
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essential equations are outlined below. We illustrate 
the results with two fine-grain-quartz SAR data sets. 
 
Regression to Obtain Parameters a, b, c and d 
The nomenclature of Berger (2010) is followed here.  
Using the weighted least-squares principle, we wish 
to minimize 
 
   S =           

 
     (2) 

 
where f is defined by Eq 1 and the weights for each yi 
value (L/T, SAR normalized OSL) are 1/σy

2, and  σ2 
is the absolute error variance in each L/T ratio.   
Corrected (Berger, 2011) Eq 12 of Berger (2010)   
 

          
 
      

  

      
 
         

 
for the iterative calculation of the best-fit parameters,  
is used to derive best-fit parameters  θ (a, b, c and d  
herein) by iteration, employing the elements of the 
matrices   U and   Y*, where matrix elements uik 
=        . The elements of the weighted matrices are 
as follows: 
 
wua =              , 
 
wub =             , 
 
wuc =              , 
 
wud =              , 
 
wy* = [                        ]    . 
 
Solution for De and Error in De 
We solve for De by using the Newton-Raphson 
iterative procedure (e.g. McCalla, 1967) applied to 
the equation  
 
      f ' =  y0 - a(1-e-bx) - c(1-e-dx)     (3) 
 
because f ' = 0 when x = De , where y0 = L0/T0, the 
L/T ratio for the 'natural' measurement. 
 
As in Berger (2010), we calculate two components of 
the variance in De. The first arises from the variance 
in y0 and is obtained by using the repeated steps of 
Berger (2010) and his equation 16 
 
    

           
    

     
 
  

 
The second error component in De arises from the 
scatter of data about the best-fit curve and from the 
errors in the parameters a, b, c, and d, as well as from 
the covariances of these errors. We calculate this 

second component by use of an extension to equation 
4 of Berger (1990).  This equation is 
 
   Δ2 =   

       

         
 , 

 
where SIG is the symmetric error matrix (the 
variance-covariance matrix) and equals VAR·(I)-1,  I 
is the information matrix of Berger et al. (1987), and 
VAR is a scalar.   
 
VAR =             

 
 

   
    

 
where N is the number of L/T data points including 
the origin. 
 
Thus, in the equation for Δ2,    

   
          

         , with f given by Eq 1 above. The elements 
of the above transpose matrix Vt = 
                              are then as follows: 
 
    
  

             

    
  

           

  
  

  
           

  
  

  
        ,   

 
and are evaluated with x = De.  
 
To complete our calculation of the second component 
of the error in De (that arising from the scatter of data 
about the best-fit DRC and errors in fitting 
parameters), we need the elements of the above 
symmetric matrix I. These elements are derived from 
Eq 3 of Berger (2010)  
 
        

 

  
 

     

   
  

     

   
  

 
and are as follows (with 1/    replaced by wi as in 
Berger, 2010): 
 
Iaa =                , 
 
Iab = Iba =                  

       , 
 
Iac = Ica =                         , 
 
Iad = Ida =                  

       , 
 
Ibb =         

         , 
 
Ibc = Icb =         

                , 
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Figure 1: Comparison of DSE and E+L best-fit 
DRCs for sample ATP-37. Error bars for L/T data 
here and in Fig. 2 are ±1σ. Here and for sample 
ATP-18, a preheat of 240°C(10s) was employed.  The 
dose rate for the beta source used is 0.12 Gy/s. 
 
 
 
Ibd = Idb =         

          
       , 

 
Icc =                , 
 
Icd = Idc =                  

       , 
 
Idd =          

        . 
 
The two calculated components of the variance in De 
are then summed as in Eq 15 of Berger (2010) to 
yield the total variance in De. 
 
   

      

          

      
 
Comparison of Results from Data Sets 
The DRC for the data set ATP-37 of Berger (2010) 
showed an apparently near linear component 
superimposed upon an SSE. The top of Berger's 
(2010) Fig. 2 compared the best-fit SSE with the 
best-fit E+L regressions. In Fig. 1 here we use the 
same data set to compare the E+L and DSE fits to 
this high-dose data set. While the differences in the 
DRCs might appear slight to the eye, they are 
significant. The 'Fit' value (weighted sums of squares 
of residuals) for the E+L fit is 1.42, and that for the 
DSE (0.80) is significantly smaller. Such a Fit value 
provides a more discriminating estimate of the fit of a 
regression model than does the less sensitive R2 value 
often cited by authors.  In this example, the estimated 
De from the DSE regression is smaller (2860 ±190 s) 
than that from the E+L regression (3060±260 s) as 
expected, though not statistically different at 1σ.  

 
 
Figure 2: Comparison of SSE, E+L and DSE best fit 
DRCs for sample ATP-18. The dose rate of the beta 
source used is 0.12 Gy/s. 
 
 
Table 1: SAR data for sample ATP-18 

Dose (s) L/T 
Natural 3.184 ± 0.068 

300 0.757 ± 0.016 
650 1.290 ± 0.028 

1000 1.679 ± 0.036 
1400 1.994 ± 0.043 
2200 2.425 ± 0.052 
3000 2.747 ± 0.059 
3800 2.925 ± 0.063 
4800 3.103 ± 0.067 
5800 3.201 ± 0.069 
7000 3.338 ± 0.074 
8500 3.437 ± 0.074 
10000 3.465 ± 0.074 
recup'n 0.005 ± 0.002 
Recycle 0.84 ± 0.03 

 
Note: These L/T ratios are from the screen display of 
Analyst v3.24, which truncates errors to the third 
decimal place.  
 
Our second high dose data set (sample ATP-18, 
Table 1) is also from a 4-11 µm fraction of purified 
quartz (extracted using H2SiF6 acid), apparently 
having (as does sample ATP-37) only a fast 
component of quartz OSL. In Fig. 2 we compare the 
best fit regression curves of SSE, E+L and DSE for 
the ATP-18 data. Clearly, the SSE model is 
inappropriate. The SSE Fit value is 3.08. The E+L 
model evidently provides a better fit, having a Fit 
value of 1.69, and yielding a De value of 6280±700 s.  
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However, the DSE model provides the closest fit (Fit 
= 0.40), and the De value is smaller (5270±550 s) as 
expected, with a smaller error. It is clear that a DSE 
model is more appropriate for these data than is an 
E+L model, though the error analysis reveals that the 
difference in estimates of De values is not statistically 
significant at 1σ for these data. 
 
A Charge-traffic Model for a DSE Dose Response 
One of the conceptual problems with the use of the 
E+L regression model is that, although it can 
represent a realistic physical process under 
application of high laboratory doses (trap creation 
superimposed upon filling of existing charge traps, 
Berger (2010) and citations therein), it is difficult to 
understand how this model can represent what occurs 
naturally over geological time scales under much 
lower dose rates. Notwithstanding, Lowick and 
Preusser (2011, pg.40) found no empirical evidence 
in their experiments "to suggest that the presence of a 
high dose linear response in quartz OSL is only a 
laboratory generated phenomenon and does not occur 
in the natural environment". In general,  however, 
several authors (cited in the introduction above) have 
assumed that a DSE model is more physically 
realistic, but that in most cases an E+L model 
provides sufficiently accurate estimates of De values 
from the high dose region of the DRC (and our 
example data do not show otherwise, at the 1σ level 
of significance). A particular difficulty has been in 
conceptualizing a specific charge traffic process or 
set of competing processes that could account for a 
DSE dose response. 
 
One envisioned process (e.g. Wintle and Murray, 
2006) is that the second SSE term in Eq 1 above 
manifests the filling of a set of traps different from 
those manifested by the first SSE term. But what is 
meant by 'different', and what other charge transport 
processes might account for such DRCs? 
Ankjærgaard et al. (2006) provided experimental 
evidence for discrimination among possible charge 
traffic schemes of OSL (and TL). They employed 
optically stimulated electron emission (OSE) and 
OSL in a comparative study of some natural 
dosimeters (NaCl, quartz and feldspar). Whereas 
OSL (and TL) manifest the end results of both charge 
eviction and charge recombination, OSE reflects only 
charge eviction. They observed that OSE from quartz 
and feldspar decays more quickly than OSL, and 
suggested that this difference manifests the 
recombination step, possibly involving a delay in the 
recombination process of OSL (and TL). They also 
observed differences in the OSE and OSL DRCs, 
which they attribute to "a dose dependent  change  in   
luminescence recombination  efficiency”,  associated 
 

Figure 3:  Charge traffic model used in this study. 
 
with OSL. However, Ankjærgaard et al. (2009) 
observed no significant differences in DRC shapes 
resulting from similar OSE and OSL experiments on 
additional quartz samples, inferring that 
luminescence recombination is not generally the 
main limit to the dose range of DRCs. Furthermore, 
Lowick et al. (2010a, p. 983) inferred from their 
experiments with quartz OSL that the high dose 
behaviour in the DRC could be accounted for by "a 
change in competition for electrons between the UV 
recombination centres whose emission is seen 
through the detection window and recombination 
centres that do not emit in this spectral region...". 
 
In the context of the above, we present a simple 
charge traffic model that produces statistically good 
DSE DRCs, but that involves only one electron 
trapping state (N) and one type of recombination 
centre (M), and (significantly) a 'long' relaxation 
time. The model is sketched in Fig. 3. Parameters N 
(cm-3) and M (cm-3) denote the concentrations of the 
traps and centres, respectively, and n (cm-3) and m 
(cm-3) their corresponding instantaneous occupancies.  
The parameters nc (cm-3) and nv (cm-3) are the 
instantaneous concentrations of free electrons and 
holes, respectively. Parameter B (cm3s-1) is the 
probability coefficient for capturing free holes in the 
recombination centre.  Parameter Am (cm3s-1) is the 
recombination probability coefficient for electrons to 
recombine with holes in the centres, and An (cm3s-1) 
the probability coefficient for retrapping. Parameter X 
(cm-3s-1) is the rate of production of electron-hole 
pairs by the irradiation, which is proportional to the 
excitation dose rate. If an excitation of constant 
intensity takes place for a period of time tD (s), the 
total number of pairs produced is XtD (cm-3), which 
is proportional to the total applied dose D. 
 
The set of rate equations governing the process is: 
 
  

  
                (4) 

 

nc 

nv 

N, n 

M, m X 

B 

Am 

   An 

M, m 
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Figure 4: Simulated charge traffic dose response and 
best fit regressions. These regressions (from 
SigmaPlot v11.2) use 1/y2 weighting. 
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      (7) 

 
In order to demonstrate the behaviour of the 
dependence of excitation on the dose, we have 
chosen the following set of parameters:  N=1015 cm-3; 
M=1016 cm-3; n0=m0=0; B=10-9cm3s-1; An=210-9 
cm3s-1; Am=10-7cm3s-1 and X=31015cm-3s-1. The 
simulated irradiations had varying lengths between 3 
and 75 s, which produced the different 'applied' 
doses.  
 
In order to simulate the excitation process properly, 
each excitation was followed by a long relaxation 
time during which, the remaining holes in the valence 
band were captured in the recombination centre. The 
remaining electrons in the conduction band were 
either retrapped or recombined with holes in the 
centre during the relaxation time. The final 
concentrations of electrons following excitation and 
relaxation were recorded. Note that in this simple 
model of one trap and one recombination centre, the 
concentrations of electrons in the trap and holes in 
the centre must be equal at the end of the relaxation 
time. 
 
The recorded values of the final trap occupancy are 
assumed to represent the luminescence signal. In the 
case of TL, this represents the area under the glow 
peak measured following the excitation and 
relaxation. For OSL it represents the integral under 

the decay curve, again, following excitation and 
relaxation.  
 
The results of the simulation with the above 
mentioned set of parameters are shown in Fig. 4. The 
analysis shows that the DSE regression model yields 
significantly better agreement with the simulated 
results than does the single saturating exponential 
(SSE) model. The exponential constants b and d in 
the regression model (Eq 1) seem to be associated 
with the processes of electron capture in traps 
(probability coefficient An) and of holes in centres 
(probability coefficient B) during the excitation and 
relaxation. 
 
Conclusions 
A scheme for regression and estimation of total 
variance in paleodose (De) values derived from SAR 
OSL experiments is presented for a double saturating 
exponential (DSE) dose response curve (DRC).  With 
real SAR data from two samples of fine-silt quartz 
given relatively high laboratory doses, the DSE 
regression model provides a better fit to the DRCs 
than does the saturating exponential plus linear (E+L) 
regression model. Additionally, the estimated errors 
in the respective De values are smaller (as expected 
because of the better regression fits) than otherwise.  
The implication of the DSE behaviour of real sample 
data for OSL dating by SAR is that there is an upper 
limit to the OSL of the DRCs and this provides one 
constraint on the maximum age for such dating that 
would not be encountered if an E+L model 
represented actual dose response in nature. The upper 
age limit is likely constrained by the behaviour 
represented by the second SSE, which may be related 
to hole-capture behaviour. 
 
Our simple charge traffic model simulates closely a 
DSE dose response. This simple model has only a 
single electron trapping state and a single type of 
recombination centre, and incorporates a 'long' 
relaxation time as per the experimental procedure.  
While this simple charge traffic model appears to 
provide a sufficient match to the observed best-fit 
DSE regression, other more complicated charge 
traffic models might also produce similar results.  
Nonetheless, the two exponents in our simple model 
may be associated with the two processes of filling of 
traps and centres, but the full process is likely to be 
more complicated. 
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