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Abstract 
I note a fundamental error in the ―alternate form of 
probability-distribution plot‖ proposed by Berger 
(2010a) and comment on some related issues, 
including transformations, radial plots, empirical 
distributions, kernel density estimates, weighted 
means and selected data. 
 
Introduction 
In a recent article in this journal (Galbraith 2010) I 
discussed, among other things, a type of ―probability 
density‖ graph that has sometimes been used to 
display OSL equivalent doses for a sample of single 
grains or aliquots. In this graph, each De value is 
replaced by a Gaussian curve centered on the 
observed De with standard deviation equal to the 
standard error of De and the curves are then summed 
pointwise. I referred to this specifically as a ―PD‖ 
graph and distinguished it from a conventional kernel 
density estimate (KDE). I tried to explain what it is 
doing and why it is not to be recommended. 
    
Also, and perhaps more importantly, I tried to 
encourage researchers to think about the meaning of 
an equivalent dose frequency distribution. To what 
extent does it represent frequencies in a natural 
population, rather than artefacts of sampling and 
grain selection or variation in luminescence and 
experimental procedures? I also distinguished 
between the distributions of true equivalent doses 
(where hypothetically, De values are measured 
without error) and observed De values, a distinction 
necessary for understanding data and making reliable 
inferences. 
    
In the same issue of this journal, Berger (2010a) 
proposed an ―alternate form of probability-
distribution plot‖ for OSL equivalent doses, which he 
called a ―Transformed-PD‖ plot, or TPD plot for 
short. The essence of this was to construct the sum of 

Gaussian curves using log De values and relative 
standard errors, rather than actual De values and their 
absolute standard errors. But the probability density 
curves so obtained were presented on a linear De 
scale, having apparently been transformed (without 
comment) from the log De scale. Unfortunately this 
transformation was not done correctly and they do 
not represent the intended probability distributions — 
and they do not have the meaning attributed to them 
in that paper, as acknowledged by Berger (2010b). 
    
Berger (2010a) also presented some interesting data 
examples and raised several other issues that are 
perhaps worth further comment — concerning radial 
plots, log transformations, empirical distributions, 
kernel density estimates, weighted means and 
selected data. He rightly noted that radial plots offer 
advantages over PD plots. In fact his radial plots are 
far more informative than his corresponding PD and 
empirical distribution plots, and his data presentation 
would be less convincing without them. This is not to 
say that one should make only radial plots of De 
values, but it supports my recommendation to look at 
them in addition to other plots that might be made.  
Berger (2010a) also stated that radial plots could not 
be used for samples containing zero or negative De 
values, because they use a logarithmic 
transformation. But of course one can make a radial 
plot without using a log transformation (or indeed 
any transformation), as acknowledged by Berger 
(2010b). 
   
However, what Berger (2010a, page 13) saw as the 
―two main criticisms‖ of the conventional PD plot are 
merely to do with the nature of the empirical 
distributions of De values and their errors, and he did 
not recognise the more fundamental problems noted 
in Galbraith (1998) and Galbraith (2010). These are 
to do with their meaning and interpretation. On one 
level, a PD plot might just be regarded as an 
empirical smoothing of the data. If so, it is a poor one 
compared with, say, a conventional KDE where the 
kernel bandwidth is chosen according to sample size 
(among other things). But often PD plots are mis-
interpreted and lead to fallacious arguments and 
unconvincing science. 
    
I elaborate on some of these points below. This 
article is not intended to be a comprehensive critique 
of Berger (2010a) but rather a discussion of some 
statistical issues arising there and elsewhere in the 
OSL literature. 
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Transforming a probability density function 
To illustrate the incorrect transformation mentioned 
above, look at the solid line in Berger (2010a, Figure 
3). That curve is supposed to correspond, on the 
natural log scale, to an equal mixture (or sum) of four 
Gaussian probability density functions (pdfs) all with 
the same standard deviation (equal to 0.10) and 
means log(5), log(10), log(20) and log(30). If we 
transform this to the linear scale, it can be shown that 
we should get an equal mixture (or sum) of four log-
normal pdfs. You can see that the TPD curve drawn 
must be wrong because the areas under its component 
curves should be equal and they are not. 
   
When introducing his method, Berger (2010a, page 
14) wrote: ―However, application of equation 2 to 
these same artificial data generates the solid curve in 
Figure 3, accurately representing their respective 
probabilities‖. But his equation 2 does not generate 
the solid curve in his Figure 3, and that figure does 
not accurately represent their respective probabilities. 
 
Figure 1 shows the correct distribution on both log 
and linear scales. The top panel shows the pdf of Z 
(corresponding to log De), denoted by f (z), and the 
bottom panel shows the pdf of W (corresponding to 
De) denoted by g(w), where Z = log(W). The formula 
relating these two pdfs is  
 

g(w) = f ( log(w) ) / w  
 
for positive w. The factor 1/w is called the Jacobian 
of the transformation and is required in order to 
preserve the validity of probability statements, which 
are related to areas under the curve. That is, the 
probability that W lies between a and b must equal 
the probability that log(W) lies between log(a) and 
log(b) for any a and b. Different transformations have 
different Jacobians. 
 
The bottom panel of Figure 1 also shows the pdf of a 
mixture of normal (rather than log-normal) pdfs as a 
red dotted line. The dashed curve in Berger (2010a, 
Figure 3) should be the same as this. The red dotted 
curve can hardly be seen as it differs only very 
slightly from g(w). This reflects the fact that if a log-
normal distribution has a small dispersion then it is 
very hard to distinguish it from a normal distribution 
with the same mean and standard deviation. In the 
present case, each component has a coefficient of 
variation of 10%, which is small enough to make the 
normal and log-normal distributions practically the 
same. If the coefficients of variation were larger then 
the two curves would differ more. 
    
     

                                     
Figure 1: Upper panel: the pdf f (z) of an equal 
mixture of four Gaussian pdfs, each with standard 
deviation 0.10 and means log(5), log(10), log(20) 
and log(30). Lower panel: the solid curve shows the 
pdf g(w) of the mixture of log-normal distributions 
obtained by the transformation w = exp(z) so that z = 
log(w). The dotted red curve shows an equal mixture 
of Gaussian pdfs with means 5, 10, 20 and 30, and 
standard deviations 0.5, 1, 2 and 3, respectively. The 
w axis corresponds to the scale of De and z 
corresponds to log(De). 
 
     
This discussion has nothing to do with the merits of 
PD plots as such, but it is instructive for 
understanding both log transformations and 
probability density functions. 
 
What is Berger's TPD plot? 
Berger (2010b) confirmed that in drawing his TPD 
plot on the De scale the Jacobian factor was omitted, 
so that the graph ―does not manifest relative 
probabilities‖ and he suggested that it shows ―rather 
something more akin to relative ‗weighted‘ 
frequencies‖. What is it really a plot of, and is it 
useful? 
   
Imagine a positive random variable W having a 
probability density function g(w) describing relative 
frequencies in a population. Consider plotting a graph 
of wg(w) against w. The total area under this curve 
would equal the mean, or expectation, of W; and the 
area under it between two values a and b would 
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represent the ‗contribution‘ to the overall mean from 
values of w in that range. However, it is hard to see 
what practical use this concept might have. In 
particular, modes or peaks of wg(w) will not coincide 
with those of g(w). 
    
Now consider a TPD curve as plotted in Berger 
(2010a, Figures 3, 4, 6, 8 or 10). Those figures do not 
have numerical scales on their vertical axes, but it 
can be shown that the TPD curve is effectively a plot 
of wg(w) against w, where g(w) is an equal mixture 
(or sum) of n log-normal pdfs, where n is the number 
of grains or aliquots in the sample. The ith log-
normal pdf in this mixture has mean yi exp(½ ri

2), 
where yi is the observed De value for the ith grain and 
ri is its relative standard error. The factor multiplying 
yi here is slightly greater than 1 and greater for larger 
ri. Thus the total area under the TPD curve is the 
average (or sum) of these means, so is a quantity a bit 
greater than the un-weighted sample mean (or sum) 
of observed De values. The TPD curve itself would 
therefore indicate some sort of relative contributions 
to this quantity from different doses represented in 
the sample data. The qualification ―some sort of‖ is 
referring to the rather arbitrary role of the relative 
standard errors of De used in constructing the curve 
and hence in defining its meaning. 
   
It is clear from this that Berger‘s TPD plot has no 
clear-cut interpretation as a frequency distribution of 
OSL equivalent doses. 
 
Log transformations (or not) in radial plots 
A strange idea appears to have arisen that a radial 
plot must necessarily use a log transformation of De 
and therefore can't be used to represent data 
containing zero or negative De values. Of course it is 
just as easy to make a radial plot using actual De 
values and their (absolute) standard errors as it is 
with log De values and relative standard errors.  
Examples of the former can be seen in Arnold et al. 
(2009) and Galbraith (2010). 
    
Not only is it possible, it is also sometimes more 
appropriate to use a linear De scale. For example, 
when De values are close to zero their relative 
standard errors may happen to be large simply 
because they are relative to something small, and 
they may appear to be uninformative on a radial plot 
that is drawn with respect to relative standard errors, 
but properly informative when drawn with respect to 
absolute standard errors. Furthermore, in such cases 
there may be no clear relationship between De values 
and their standard errors, suggesting that the main 
sources of error are additive, rather than 
multiplicative (e.g. Arnold at al., 2009) and hence 

that comparisons on the linear De scale are more 
straightforward. 
    
For a radial plot, the choice between using a log or 
linear De scale is partly related to whether points are 
better compared using relative or absolute standard 
errors. Another transformation, mentioned in 
Galbraith (2010), is the modified log transformation z 
= log(w+a) for some suitably chosen a. This can be 
useful to plot data having some large and some zero 
or negative values. If a is small, the transformation is 
similar to a log transformation, while if a is large it is 
more like a linear transformation, so you can think of 
the value of a as making a compromise between these 
two extremes. 
 
Why are radial plots more informative? 
Radial plots are more informative because they 
exploit the information in the precisions. 
    
In his Figures 1 and 2 and corresponding text, Berger 
(2010a) cited a radial plot and ―weighted histogram‖ 
(PD plot) from Galbraith (1988). These used some 
artificial data from a discrete two component mixture 
with component means +0.5 and 0.5. He found it 
―inexplicable‖ that I then wrote: ―The weighted 
histogram is superficially attractive and suggests a 
bimodal distribution but does not point to the true 
mixture as informatively as the radial plot does‖. 
 
Here is an explanation. The radial plot (reproduced as 
Figure 2 here) shows that the data are completely 
explained by a discrete two-component mixture — 
i.e. just two distinct values, roughly equal to +0.5 and 
0.5. This is because you can easily imagine two 
radii going to +0.5 and 0.5 and, by referring to the 
±2 scale on the vertical axis, see that all of the 
variation about them can be explained by the 
observation errors. This happens to be the model that 
was used to generate the data, but even if we did not 
know this, it is clear that the data are consistent with 
it. 
  
Of course, it would be easier to see this by explicitly 
drawing the two radii with a ±2 shaded band about 
each.  Each point would fall in, or very close to, one 
or other band.  Furthermore their scatter looks like a 
superposition of homoscedastic random scatter    
about each line. You can confirm this by drawing 
your own lines and bands. I did not do this in my 
paper in order to avoid imposing any specific model 
and to allow the reader the freedom to consider 
possible mechanisms that might have produced these 
data. 
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Figure 2: A radial plot of artificial data from a 
discrete two component mixture with means +0.5 and 
0.5.This is a copy of Figure 2 from Galbraith 
(1988). 
 
No such inferences can be made from the PD plot 
(Galbraith 1988, Figure 9a or Berger 2010a, Figure 
2). Although the curve has two modes at about +0.5 
and 0.5, it does not tell us either that more than one 
component is needed to explain the data, or that two 
is enough. The radial plot tells us both of these 
things. Furthermore there is no simple relation 
between the number of components in a mixture 
distribution and the number of modes its pdf has. For 
example, it is easy to construct a two component    
mixture of normal pdfs that is unimodal, and whose 
mode differs from both component means.  Looking 
at the modes of a PD plot is even more ambiguous 
because it is not actually estimating the true dose 
distribution. 
    
In Galbraith (1988, Figure 3) and Berger (2010a, 
Figure 1) the radial plot is re-drawn with different 
plotting symbols to show explicitly which 
observations came from each component. You can 
see there that most of the low-precision values are 
consistent with both radii and that many fall closer to 
the wrong radius (the component that they do not 
belong to) than to the right one. This reflects 
uncertainty associated with the observation errors 
that is inherent in the original data, and that cannot be 
resolved however you plot them. 
 
That figure is instructive for another reason.  Suppose 
that we wanted to estimate the lowest population 
component mean value. A method that may naturally 
spring to mind is to select a subset of points that we 
think belong to this component and calculate a mean 
or weighted mean of these. You can see from the 

figure that however the subset of points is selected it 
will always contain some from the higher component 
or omit some from the lower one. I comment further 
on this below. 
 
I would encourage those interested to read the whole 
of that section in my original 1988 paper. That paper 
also explains the close connection between radial 
plots and least squares regression though the origin, 
which helps both with understanding and using radial 
plots. 
 
Empirical distributions and kernel density 
estimates 
Berger (2010a) rightly pointed out that more 
information is shown by adding a cumulative plot of 
ranked data with standard error bars. The individual 
points show the cumulative empirical distribution of 
the observed De values, and the one-sigma error bars 
display their standard errors. But a PD plot 
superimposed on it combines these incorrectly. It 
would make more sense to draw a conventional 
kernel density estimate (KDE), or a histogram, in 
order to see the shape of the distribution of observed 
De values. 
    
The upper panel of Figure 3 shows the ranked 
observations with one-sigma error bars along with a 
Gaussian KDE for the data that I used in Galbraith 
(2010). Here I have chosen the kernel bandwidth to 
correspond to the bin width in my histogram 
(Galbraith 2010, Figure 1). The histogram there and 
KDE here both show the smoothed data to essentially 
the same degree of resolution. They emphasise 
slightly different aspects. The KDE shows more 
detail of the shape of the empirical distribution while 
the histogram shows numbers of grains and areas 
under the curve more clearly. The standard errors are 
displayed in Figure 3, but they are not used in the 
construction of the KDE. 
 
What bandwidth should one use for a KDE? As with 
choosing the bin width of a histogram, there is no 
hard and fast rule. It should depend on the data and 
purpose. But there are general guidelines in the 
literature (in the R package, in particular).  Note that 
such guidelines are based on the premise that one is 
trying to see the shape of the underlying frequency 
distribution from a sample of observations measured 
without error, which is usually not the case with 
observed equivalent doses. 
 
The bandwidth of 0.058 in the upper panel of Figure 
2 is very close to the value given by the R function 
bw.ucv (unbiased cross-validation) applied to these 
data, which is 0.061. In the lower panel I have drawn 
the graph again but using the bandwidth given by the 
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Figure 3: Kernel density plots with two different 
bandwidths and empirical cumulative distributions 
for 82 single grain equivalent doses (data from Olley 
et al., 2004). The grey bars show ±1 standard error 
for each point. The red dotted curve shows a PD plot 
of these data. 
 
    
R function bw.nrd (one of several general rules of 
thumb). This is a larger bandwidth (0.141) giving a 
smoother graph. In some ways this version looks 
―nicer‖, but of course more resolution is lost. This is 
good if you think that such resolution is meaningless, 
but bad if it might be informative. Note that when    
plotting a KDE there is an implicit assumption that 
the data were sampled from a continuous distribution, 
and presumably one that is meaningful. 
    
In the lower panel of Figure 3 I have added a PD 
curve (the red dotted line). The scale is chosen so that 
the area under it is the same as that for the KDE.  
Given that it does not represent the distribution of 
either the true or observed De values, what use is it?    
In this example, it is even smoother than the KDE in 
that panel and its mode is lower (practically zero). 
Perhaps its worst feature, though, is its behaviour in 
the lower tail. We know that the true doses cannot be 
negative, so a negative observed dose gives us a 
lower bound on the absolute size of the actual error 
for that grain. For example, if we observed a De of 
0.2 Gy, then, because the true value for that grain 
cannot be negative, the estimation error must be 

negative and not less than 0.2 Gy in absolute value — 
i.e. the observed value must be (more than) 0.2 Gy 
below the true value (regardless of what the standard 
error is). Yet the PD plot still puts more area below 
even the lowest negative De. 
   
There is another distinction between a PD plot and a 
KDE (or histogram) that is worth repeating: for larger 
sample sizes one normally uses a smaller bandwidth 
for a KDE (or bin width for a histogram). But a PD 
plot does not get any better, in terms of resolution, as 
the number of grains increases. In general it gets 
worse because there are more low precision points to 
obscure the information. For example, the sample 
sizes in Berger's four examples are, respectively, 22, 
63, 56 and 179.  It could be argued that the PD plot of 
the last one, in his Figure 10, is too smooth and that a 
KDE with a smaller bandwidth would show the data 
better. 
    
Error bars and confidence intervals 
The standard error bars in Figure 3 can be regarded 
as simply displaying the size of the standard error of 
each estimate. But they could also be regarded as 
indicating confidence intervals for the true values.  In 
that case they would be approximate 68% intervals 
rather than the more conventional 95%, or two-
sigma, intervals. 
    
While this may be of some use, it is extremely hard 
to compare several confidence intervals of differing 
lengths, both visually and logically. One may be 
tempted to infer ―significant or not‖ differences from 
seeing whether intervals overlap, though of course 
that would not be correct. There is no easy way to 
interpret a number of univariate confidence intervals 
together; in principle, a multivariate confidence 
region is required. 
    
A widely recognised disadvantage of confidence 
interval plots is that the least precise estimates have 
the longest intervals and tend to dominate the space 
on the graph.  Sometimes they can be so dense that it 
is counter-productive to draw them all and it would 
be better to try to find another method of displaying 
precisions. 
    
Very often the standard errors increase with dose, 
which makes it still harder to compare them. In such 
cases it may be clearer to plot doses (and intervals) 
on a log scale. Another aspect of this is that a 
symmetric interval on the log De scale will not    
transform to a symmetric interval on the De scale.  
That is, the symmetric approximate 95% interval 
log(yi) ± 2ri for the true log dose corresponds to the 
non-symmetric interval  yi exp(±2ri) for the true dose, 
which may differ somewhat from the symmetric 
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interval yi ± 2si, where yi denotes an observed De 
value and ri and si are its relative and absolute 
standard error, respectively. If we really are regarding 
the error bars as confidence intervals, then some 
thought should perhaps be given to how they are best 
defined and displayed. For example, if the estimation 
errors were thought to be essentially multiplicative, 
then it would make more sense to construct    
symmetric confidence intervals on the log scale. 
 
Weighted means and selected data 
In his examples, Berger (2010a) suggested that 
instead of using a minimum age model, a sufficient 
estimate of the burial dose can sometimes more 
simply be obtained from a weighted average of the 
De values for a selected subset of grains; and he 
further suggested that sometimes using a weighted 
average of log(De) values is better. However, 
whatever form of average might be used, the crucial 
questions here are: (a) which subset of grains should 
be selected? and (b) what are the bias and variance of 
the resulting estimate? 
    
With respect to (a), many possibilities spring to mind. 
Among the more sensible would be methods that 
tried to select the complete group of ―youngest‖ 
grains whose observed De values were consistent 
having a common burial dose, taking into account    
estimation error and natural variation between true 
doses with the same burial history. Ideally, one hopes 
to select all of the fully bleached grains and no 
others, though this is usually not possible — see my 
earlier comments with respect to Figure 2. There will 
nearly always be partially bleached grains having 
observed De values consistent with those for well 
bleached grains. 
    
Galbraith (2010) noted that there is no good rationale 
for choosing the grains whose De values are close to 
the mode of a PD plot (i.e. choosing them because of 
this) even though that may sometimes produce an 
estimate close to the correct value. It might be more 
reliable to choose them by looking at the radial plot, 
which would at least make it easier to account for 
their differing precisions. But however you choose 
them you are bound, except in rare cases, to either 
include some partly-bleached grains or exclude some 
well-bleached ones. 
    
With respect to (b), Galbraith (2010) noted that 
selecting grains with the lowest doses and treating 
them as if they were properly representative of well-
bleached grains leads to biased estimates, sometimes 
grossly biased. For example, you can imagine that if 
you tried to be conservative and selected only the 
grains with the very lowest observed De values then 
you are likely to omit some higher values from well-

bleached grains and end up with an under-estimate of 
the burial dose. Many of the lowest observed values 
will be low because their estimation errors are 
negative, so they will be lower than the 
corresponding true values. Hence, such a subset 
would be biased towards grains whose observed De 
values are lower than the true values. 
    
Furthermore it is not correct to apply the usual 
standard error formula for an estimate obtained from 
a sub-sample that has been selected on the basis of 
the observed De values. This would not be an 
independent sample in its own right and allowance 
would need to be made for the effect of the selection.  
Calculation of a valid standard error is difficult for an 
objectively selected sample and impossible for a 
subjectively selected one. 
    
Berger (2010a) rightly noted that such estimates are 
less reliable than those based on the more formal 
minimum age models. The latter treat the problem as 
one of extracting a specific component from a 
mixture. As such, they do not attempt to select a 
subset of grains at all, but rather they assign to each 
grain a probability of belonging to the well-bleached 
component. 
    
On the subject of weighted averages and combining 
data generally, I recommend the encyclopedia entry 
by Cox (1982). This is a lucid and insightful article 
from a high authority. 
 
A note on Sircombe and Hazelton (2004) 
An interesting paper by Sircombe and Hazelton 
(2004), cited by Berger (2010a), adds some further 
theoretical insight to the question of estimating a 
frequency distribution from observations measured 
with error. It is concerned with detrital zircon ages 
obtained by U-Pb dating. It considers data yi 
generated by the equation  
 

yi = xi + ei      
                                                                                                             
where xi is sampled from a distribution with pdf  f (x) 
and ei is randomly drawn from a normal distribution 
with mean 0 and known standard deviation si. Like 
Galbraith (2010), it discusses how difficult it is to 
estimate f (x). It then considers two samples of data 
and proposes a way of measuring the dis-similarity of 
their two different f(x)s without explicitly estimating 
either of them. Interested readers might like to look at 
its Figures 1 and 3. The former shows two different 
true f(x)s that have the same observed distribution 
(when errors are added to the xis) and the latter shows 
how their method can nevertheless distinguish 
between them. Particularly illuminating is the way 
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the standard deviations si are used; this is very 
different from how they are used in a PD plot. 
     
In addition, Figure 5 of that paper shows ten detrital 
zircon age distribution plots obtained by ―summing 
individual Gaussian distributions‖ which, as far as I 
can see, are what we are calling PD plots. They are 
presented simply to show the ten samples together in 
a small space so that they can be plotted against 
measures of dis-similarity between pairs of their 
underlying f(x)s. No inferences about f(x) are made 
from these plots — indeed the authors explicitly say 
they are displaying the estimation errors as well as 
the age variation. That figure is undoubtedly 
informative, mainly because the estimation errors are 
small (in some cases very small) compared with 
differences between the single grain ages. These PD 
plots are very different from those normally 
encountered with OSL De data. Nevertheless, the 
error variation, though mostly relatively small, is still 
confounded with the age variation. 
 
Summary 
Frequency distributions of OSL equivalent doses are 
hard to understand, even when De is measured 
accurately, because they will reflect sampling, 
experimental and observational effects in addition to 
the key features of scientific interest. Histograms     
and kernel density estimates of De values are hard to 
interpret. 
     
The ―alternate form of probability-distribution plot‖ 
proposed by Berger (2010a) does not represent a 
proper probability distribution because of an 
incorrect transformation from the log scale. If it were 
plotted on a log scale it would be a PD plot in the 
sense of Galbraith (2010) — but using log(De) values 
and relative standard errors, rather than De values and 
absolute standard errors, as is implied in the abstract 
of Berger (2010a). If it were correctly transformed to 
the linear De scale it would often not differ greatly 
from a PD plot directly constructed on that scale. 
Berger‘s interpretations of his TPD graphs are based 
on a misunderstanding of what he plotted and his 
conclusion that they can ―reveal meaningful relative 
structure in De distributions‖ (Berger 2010a, p.19) is 
not justified. 
 
Galbraith (1988) and Galbraith (2010) discussed PD 
plots in the context of fission track ages and OSL 
equivalent doses, respectively. Such plots do not have 
a sound statistical basis and they have often been 
mis-interpreted in the literature. Berger (2010a) noted 
that PD plots have been criticised but did not 
recognise the substantive criticisms in those papers. 
PD plots have sometimes been used as an aid to 
selecting subsets of grains from which a weighted 

mean dose is calculated. This is not a reliable practice 
for the reasons given above. 
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Introduction 
Rex Galbraith and I exchanged many e-mails in 2010 
concerning my note on so-called TPD plots (Berger, 
2010a).  As a result I submitted an Erratum (Berger, 
2010b) which I think clarifies Berger's note 
succinctly. That e-mail exchange, as does his recent 
Comment (Galbraith, 2011), draws out an essential 
'philosophical' difference. Perhaps the best way to 
summarize this difference is to say that I am 
concerned with "empirical distributions" and how to 
use visual representations of single-grain paleodose 
(De) estimates as accessible guides to choices of 
usefully accurate calculations of 'mean' De values, 
whereas he is describing the same 'elephant' from a 
statistically idealistic viewpoint. Clues to this 
idealism are provided by the frequent use in 
Galbraith (2011) of ill-defined (with respect to 
single-grain De data) words such as: 'true', 'useful', 
'less informative', 'more informative', 'less meaning', 
'less convincing', 'resolved', 'actual', etc. In the 
context, these words misrepresent the pragmatic 
message of Berger (2010a, 2010b). While I 
appreciate his current note as an attempt to educate 
the reader on the theoretical nuances of the statistical 
handling of single-grain De distributions and their 
embedded uncertainty estimates, and calculations of 
weighted means, for some of the reasons outlines 
above, the Comment (Galbraith, 2011) compels some 
reply herein. 
 
One of the outcomes of our e-mail exchange was my 
request that he provide to the community of OSL 
users a software or spreadsheet 'program' for the 
ready computation of KDE plots such as shown in 
Figure 3 of Galbraith (2011). Presumably such plots 
can be generated (with effort by a novice) from the R 
statistical package, but most of us don't use that 
package routinely (I employ it for Arnold's unlogged 
MAM code: Arnold and Roberts, 2009), if at all.  
Another request was for dissemination of a software 
package for generating reasonably high-resolution 
radial plots (e.g., pdf files, rather than clipboard 
copies) via a user-friendly interface (GUI) that 
handles both linear and log De scales. He has not 
supplied that to me. In this context, the Comment of 
Galbraith (2011) could have been more helpful. The 
radial-plot software available from John Olley has an 

excellent GUI but it does not permit use of linear De 
scales, and creates only clipboard images of the plots.  
The radial-plot software from Vermeesch (2009) 
does permit creating high-resolution plots (saved as 
pdf files) and use of linear scales, but lacks many 
desirable user-selectable options (e.g. choosing 
centers of ±2σ bands and band fills) that the Olley 
package offers. 
 
In addition to these general comments, I have some 
comments to make on specific sections of Galbraith 
(2011), under his topic headings. 
 
Introduction 
Here he states that Berger (2010a) "does not 
recognize the more fundamental problems noted in 
Galbraith (1998) and Galbraith (2010)". This is 
incorrect and misrepresentative. Berger (2010a) did 
not attempt a fundamental discussion of the 
underlying principles expounded in these citations.  
How can that lacuna then demonstrate a lack of 
recognition?  
 
Transforming a probability density function 
The Erratum (Berger, 2010b) makes it clear that the 
areas under the peaks of the TPD plot cannot be used 
as indicators of relative probability, thus much of this 
section of Galbraith (2011) is redundant. 
 
What is Berger's TPD plot? 
There appears to be a logical inconsistency, in that 
(implied in Galbraith, 2011) it is permissible to adjust 
bin-widths to construct histograms of data points 
('univariate estimates', if you will) lacking equal 
uncertainties, but it is not permissible to create a 
visual plot (TPD) free of such forced 'bandwidth' 
choices (unless once thinks the choice of a Gaussian 
is 'arbitrary'). It is misleading to state (Galbraith, 
2011) that "the role of the relative standard errors of 
De" is "arbitrary". Also, what does Galbraith (2011) 
mean by "clear-cut interpretation" in the statement 
that the "TPD plot has no clear-cut interpretation"? 
Does he mean 'statistically idealistic', or 'empirically 
pragmatic'? 
 
Log transformations (or not) in radial plots 
This section is unnecessary because Berger (2010b) 
clarified that issue, concisely. 
 
Why are radial plots more informative? 
Berger (2010a) gave examples (and the literature has 
many more) where a radial plot is essential, but 
Galbraith (2011) repeatedly uses idealistic words 
such as "completely explained", or "more 
informative" to imply that other plots are useless.  
Also, the word "enough" in the phrase "or that two is 
enough" in paragraph 4 or 5 (depending on what is 
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counted as a paragraph) has a different meaning for a 
pragmatic geochronologist than for an idealistic 
statistician. In Figure 9a of Galbraith (1988) (which 
the reader should read) and Figure 2 of Berger 
(2010a), I continue to see that the PD plot illustrates 
the presence of two modes and that this (existence of 
two modes) is the most parsimonious view of that 
data distribution. Of course, in a real data set one can 
easily violate Occam's razor and conceive of many 
embedded components, but what would be the 
(geological) meaning of that? In the next paragraph, 
Galbraith (2011) makes remarks about overlapping 
data points that apply equally to a PD plot (if one 
plots the data points and uncertainties with this plot). 
 
Empirical distributions and kernel density estimates 
The word "incorrectly" is a statistical usage, whereas 
in dating practice, these nuances in Galbraith (2011) 
are likely to be largely of a secondary or tertiary 
concern, because one often is (or should be) 
comparing OSL age estimates with numerical or 
stratigraphic age estimates obtained from other 
methods.  Again, it would have been more helpful if 
user-friendly code or standalone software were 
provided for generating such KDE plots (with all 
their subjectivity). The rest of this section seems to 
imply that with real data within single-grain De 
distributions (rather than with statistically idealistic 
data points) every bump and wiggle should be 
resolved or would be informative (informative of 
what?). In dating practice, as stated implicitly (if not 
explicitly) by Berger (2010a), many single-grain De 
data points obtained from non-eolian deposits have 
no geological meaning. Generally, if non-eolian (not 
uniformly bleached optically) samples are collected 
carefully (this topic is addressed below), only the 
lowest De values would have meaning (last daylight 
exposure), unless there are stratigraphic indicators 
that a specific multi-depositional history could be 
preserved, or in carbonate-bearing deposits, evidence 
of significant β micro-dosimetry. An example would 
be provided by buried soil horizons, in which case 
the lowest De values might not relate to the main 
depositional process or event. 
 
In other words, in the Figure 3 of Galbraith (2011) 
and in many published examples of single-grain De 
distributions, it is not important to 'resolve' (whatever 
that word might mean to readers) minor clusters of 
De values above the lowest 'age' group. Of course, 
deviations caused by unrecognized or uncorrectable 
effects of β micro-dosimetry fold into interpretations 
in some cases. Further folded into the generation of 
'under-estimates' of 'true' single-grain De values are 
the effects of careless sample collection when 
deposits are heterogeneous. For example, as stated 
(Berger, 2010a), the use of brute-force tube or pipe 

sampling may introduce (no one has investigated this 
effect, to my knowledge) 'too-young' grains (from the 
sediment face) into the interior of the sample. There 
are published examples (e.g. supporting online 
material of Jacobs et al., 2008) of single-grain De 
distributions where the authors are motivated (by 
stratigraphic or archaeological evidence) to employ a 
central-age or finite-mixture model and to dismiss 
widely discordant 'too-young' De data points that may 
be artifacts largely of the sample collection method. 
 
Error bars and confidence intervals 
It is not "extremely hard" for me (and presumably 
most practicing geochronologists) "to compare 
several confidence intervals of differing lengths, both 
visually and logically". Also, why is it "counter-
productive" to draw confidence intervals?  Counter-
productive to what? ...to prediction of certain 
statistical parameters, or to age estimation from 
empirical data? 
 
Weighted means and selected data 
There are several points of disagreement, and I think 
that merely citing a few standard books (e.g. 
Bevington and Robinson, 1982; Moroney, 1965; 
Topping, 1962) on treatment of uncertainties would 
have sufficed. However, I fail to understand parts of 
the fourth paragraph. For example, in a geological 
sense, how can there be "some higher values from 
well-bleached grains" (apart from Gaussian or other 
probability effects) if these values indeed have been 
well-bleached and share the same β micro-dosimetry, 
unless one considers such and other physical effects, 
which Galbraith (2011) does not mention?  Also, 
negative De values more than one (estimated) 
standard deviation below zero are possible if one 
accepts Gaussian probability in the measurement of 
De values close to (and above) zero. Much of that 
paragraph's argument is hypothetical conjecture: 
statistical idealism disconnected from empirical 
settings. 
 
Summary 
I disagree with the final sentence in Galbraith (2011): 
"This" selection of subsets of data points "is not a 
reliable practice...".  Galbraith's definition of 'reliable' 
apparently is not mine. There are several examples in 
the single-grain OSL dating literature where selection 
of subsets provides usefully accurate (geologically, 
stratigraphically) age estimates. Of course, there are 
several examples in such literature where selection of 
subsets by use of visualization plots is too subjective 
(see some examples in Berger, 2010a) to be useful, 
and one must resort to more refined statistical 
calculation schemes (e.g., minimum-age, central-age 
models, Galbraith et al., 1999) than use of weighted 
means. 
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Message from the Editor 
Following the long discourse that has ensued in the 
last two issues of Ancient TL, the Editorial Board has 
decided to clarify the maximum length of Letters and 
Replies. The purpose of this is not to stifle 
discussion, but rather to ensure that readers are able 
to clearly follow the line of argument arising from the 
original article. In the future, Letters to Ancient TL 
will be limited to a maximum of two printed pages, 
including diagrams, tables and references (equivalent 
to about 1400 words of text). Replies will have the 
same limit. 
 
G.A.T. Duller 


