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Abstract 
   In luminescence dating, there are various software 
packages that can be used to do data analysis, such as 
Analyst, Java RadialPlotter, SigmaplotTM and so on. 
There is also an open source R package 
Luminescence, which has the capacity to tackle not 
only lots of basic statistical analysis but also provide 
more advanced data treatment. In this article, we 
present another R package, numOSL, the aim of 
which is neither to present a comprehensive numeric 
tool for luminescence dating just as the R package 
Luminescence did, nor to cover all numeric topics 
regarding luminescence dating. We focus only on the 
most frequently encountered numeric problems 
concerning luminescence dating, including equivalent 
dose calculation and error estimation, decay signal 
decomposition, fast-component equivalent dose 
calculation, and statistical age model optimization. 
Almost all our code is written in Fortran and is linked 
to R using an interface in order to improve 
algorithms, generality and flexibility. This makes it 
faster and perhaps more powerful when comparing to 
other numeric software.  
 
Introduction 
   Basic numeric techniques are an important aspect 
of luminescence dating, which are frequently 
encountered in daily handling of luminescence data. 
These numeric techniques may include: 1) 
interpolation; 2) non-linear parameter optimization; 
3) Monte-Carlo simulation; and 4) maximum 
likelihood estimation. Many software packages can 
be used to perform a special kind of numeric analysis 
for luminescence dating. For example, Analyst 
(Duller, 2007a) is mainly used for basic data handling 
such as data import/export, equivalent dose 
calculation, and plotting of graphs. Java 
RadialPlotter (Vermeesch, 2009) focuses on 
optimizing parameters in Galbraith’s statistical age 

models and drawing radial plots (Galbraith, 1988). 
SigmaPlotTM has been frequently employed to carry 
out decay curve fitting (Choi et al, 2006). However, 
if one wants to perform more flexible and more 
comprehensive analysis on a series of different kinds 
of data, such as curve fitting with decay signal data, 
or statistical age model analysis with equivalent dose 
(ED) values, no single software mentioned above can 
satisfy all the requests. There also is an open source 
R package Luminescence (Kreutzer et al, 2012, 
Dietze et al, 2013) written in pure R language, which 
contains more comprehensive numeric routines to 
analyze various kinds of luminescence data. Though 
flexible, sometimes pure R function run very slowly, 
which may impede its implementation in problems 
that need a great number of iterations or Monte-Carlo 
simulations.  
   R serves as excellent statistical software (Ihaka and 
Gentleman, 1996; R Core Team, 2013), and is free of 
charge. Most importantly, code written in R is 
available to the user and might be modified and 
redistributed. Another significant characteristic of R 
is that it can easily communicate with other 
programming languages such as Fortran and C++. 
Hence one can write the time-consuming part of a 
program in Fortran or C++ and then link it to R 
using an interface to achieve acceptable running 
speed. This remains R’s flexibility and also makes it 
really powerful. In this paper, we introduce the R 
package numOSL as a toolbox for numeric 
optimizations that are frequently encountered in 
luminescence dating. To make it flexible and 
powerful, almost all our functions are written in 
Fortran and are linked to R using interface. The aims 
of this paper are: 1) unifying regular numeric routines 
in luminescence dating into handy functions and 
make them available to all users; 2) introducing the 
usage of these functions with examples.  
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Introduction to functions in R package numOSL  
 
Function: calED 
   Currently, there are eight functions in package 
numOSL (Table 1). Function “calED” is used to fit a 
dose-response curve using the Levenberg-Marquardt 
algorithm and calculate an ED value by interpolation. 
Three models are provided (linear, exponential, linear 
plus exponential model) to do the fitting. For the 
linear model the fitting will not be a problem, but 
when it comes to an exponential or an exponential 
plus linear model, care needs to be taken regarding 
the choice of initial parameters. There are two 
options in function “calED” that can be used to 
initialize non-linear parameters: “nstart” and “upb”. 
“upb” is used to control the upper boundary of the b 
value in the non-linear model, which will be 
generated uniformly in the space (0, upb); then other 
initial values can be obtained with linear algebra 
method. For example, in an exponential model of the 
formula   cea bx  1y , combining paired 
observations (xi, yi, i=1,…,n) with a uniformly 
distributed random b value, a and c can be calculated 
using a linear algebraic method. Then the Levenberg-
Marquardt algorithm will be called to optimize those 
parameters. The process will be carried out 
repeatedly until stopping conditions are satisfied. The 
maximum allowed number of attempts is set to be 
“nstart”. The standard error of the ED value can be 
assessed using two methods (simple transform and 
Monte-Carlo simulation) outlined by Duller (2007b). 
Figure 1 is the outputted plot if we input the 
following commands to the R console: 

 
  library(numOSL) 
  Curvedata<-data.frame(cbind( c(0, 18, 36, 54, 72),  
         c(0.03,1.49,2.51,3.32,4.0),       
         c(0.002,0.05,0.12,0.34,0.37) ) ) 
  Ltx<-c(3.11, 0.131) 
  res<-calED(Curvedata, Ltx, model = "exp", nsim = 3000) 
  res 

 
 
 
 

Function: decomp 
   Function “decomp” is a unified function for decay 
curve decomposition and can be applied either to 
CW-OSL or LM-OSL decay curves. Fitting decay 
curves is an ill-conditioned problem, and it is very 
sensitive to the choice of initial parameters. To make 
the procedure flexible and practicable, CW-OSL 
decay curves are fitted using a combination of a 
differential evolution method and the Levenberg-
Marquardt algorithm as suggested by Bluszcz and 
Adamiec (2006). The general procedure for CW-OSL 

Table 1: Available functions in version 1.0 of 
package numOSL 
Function Description 
calED Calculate an ED value and 

assess its standard error 
dbED Summarize the statistical 

characteristics of the 
distribution of ED values 

decomp Decompose CW-OSL or LM-
OSL decay curves  

decompc Decompose CW-OSL or LM-
OSL decay curves (plus a 
constant component) 

fastED Calculate a CW-OSL ED value 
using the fastest component 

print.RadialPlotter Print an object of class 
“RadialPlotter” 

RadialPlotter Optimize parameters of 
Galbraith’s statistical age 
models  

sgcED Calculate ED values using the 
standardized grow curve 
method 

 
 

 
 
Figure 1: Plot output for function “calED”. The 
shaded area shows a gaussian kernel density plot for 
3,000 ED values simulated with a Monte-Carlo 
technique. 
 
fitting is: parameters are initialized using a 
differential evolution algorithm, and then using these 
initial parameters the Levenberg-Marquardt 
algorithm is employed for optimization. As pointed 
out by Bluszcz and Adamiec (2006), in some radical 
cases, the differential evolution algorithm (Storn and 
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Price, 1997) may fail, and we also note that 
sometimes parameters can be initialized with the 
differential evolution algorithm successfully but the 
Levenberg-Marquardt algorithm fails. If any of the 
two situations mentioned above occurs, a series of 
simple trials will be carried out, that is: detrapping 
rates are initialized to values outlined by Jain et al 
(2003) using permutation and combinations. For 
example, if we wish to decompose a given CW-OSL 
decay curve to 3 components, there will be C(3,7)=35 
possible combinations of detrapping rates. Then for 
each possible combination of detrapping rates the 
number of trapped electrons that correspond to those 
detrapping rates can be obtained using a linear 
algebra method (Bluszcz, 1996) and these values will 
be used as initial parameters for the Levenberg-
Marquardt algorithm. The above process is 
performed repeatedly until an acceptable result is 
found. Since the program is written in Fortran and 
wrapped with R, the whole procedure can be 
executed very quickly. The simple trial method 
described above is exactly the tactic we adopt in LM-
OSL decay curves decomposing. Because we find it 
difficult to use the same method as used for fitting 
CW-OSL decay curves. The longer stimulation time 
makes it so time-consuming to conduct the 
differential evolution algorithm, even if all parts of 
the program are written in pure Fortran, that it 
becomes impracticable. Using the following 
commands in the R console we can obtain the plot 
shown in Figure 2 and Figure 3, respectively. The 
optional parameter “outfile” can be used to output 
decomposed signal values to a file and save it into the 
current work directory in “.csv” format (here the file 
will be “lmsig.csv”). 
 
  data(Signaldata) 
  print(decomp(Signaldata$cw[,1:2], ncomp=3, lwd=2)) 
  res<-decomp(Signaldata$lm, ncomp=4, typ="lm",  
          transf=TRUE, lwd=2, outfile="lmsig" )  
  res 

 
 

Function: fastED 
   A basic requirement for the application of the 
single-aliquot regenerative dose protocol (Murray 
and Wintle, 2000) is that the initial part of the OSL 
signal is dominated by the fast component (Li and Li, 
2006). Generally, a fast-component ED value can be 
obtained through direct measurement (Bailey, 2010), 
component isolation with curve fitting (Cunningham 
and Wallinga, 2009) or integral channels selection 
(Cunningham and Wallinga, 2010). The function 
“fastED” attempts to build a fast-component growth 
curve to estimate a fast-component ED value using 
data obtained by the single-aliquot regenerative dose 
protocol  (a  series  of  decay  curves). The number of  

 
Figure 2: Decomposed 3 components for natural 
CW-OSL decay curve of sample GL1-1 (Peng and 
Han, 2013) using function “decomp”. The estimated 
parameters (magnitudes and decay rates) are given 
in table 3. 

 
Figure 3: Decomposed 4 components for a LM-OSL 
decay curve (Li and Li, 2006) using function 
“decomp”. The estimated parameters are given in 
table 3. 
 
 
trapped electrons that corresponds to the largest 
decay rate will be regarded as the fast-component 
signal, which cannot always ensure a pure fast-
component signal to be extracted if ultra-fast 
component appears. The number of components to be 
decomposed  is  specified by the  argument “ncomp”.  
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Figure 4: Result of fast-component ED estimation for sample GL1-1 with 3 components using function “fastED”. A 
total of 12 decay curves are decomposed and the growth curve is constructed with the extracted standardized fast-
component signals. 
 
During the calculation, the model used for growth 
curve fitting is chosen automatically with the 
principle of the minimum sum of square of residuals. 
Only CW-OSL data can be analyzed currently. We 
use sample GL1-1 (Peng and Han, 2013) as an 
example to show the usage of this function, the two 
decay curves that correspond to 0 regenerative dose 
are precluded before the analysis and each decay 
curve is decomposed to 3 components. The plot is 
shown in Figure 4: 
 
 fastED(Signaldata$cw[,c(-12,-13)],  
  ncomp=3, constant=FALSE, 
  Redose=c(80,160,240,320,80)*0.13) 
 

   The running time of the above process can be 
checked by R inner function “system.time” as: 
 
 system.time(fastED(Signaldata$cw[,c(-12,-13)], 
   ncomp=3, constant=FALSE, 
   Redose=c(80,160,240,320,80)*0.13)) 
 
Function: RadialPlotter 
   Function “RadialPlotter” is a unified function for 
optimizing a number of statistical age models as 
reviewed in Galbraith and Roberts (2012). It provides 
routines for the central age model (Galbraith et al, 
1999), the finite mixture age model (Galbraith, 1988, 
Galbraith and Laslett, 1993) and the minimum age 
model (Galbraith et al, 1999). Depending on the 
specified model, it draws a radial plot automatically,  
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Figure 5: Radial plot output for 3-parameter 
minimum age model of sample GL1-1 with function 
“RadialPlotter”. The black line indicates estimated 
minimum ED value. 
 
which works just like the Java RadialPlotter written 
by Vermeesch (2009). Both the central age model 
and the finite mixture age model are analyzed using 
the maximum likelihood estimation method outlined 
by Galbraith (1988). For minimum age models, it 
provides  two  numeric  procedures to do the task: the 
“L-BFGS-B” algorithm (Zhu et al, 1994) and the 
“port” routine (the “port” algorithm is conducted 
using R inner function “nlminb” in package stats). 
The result returned by the function “RadialPlotter” is 
an object of class “RadialPlotter”. An example of 
using this function to fit a three-parameter minimum 
age model with sample GL1-1 is shown below, and 
the output is Figure 5: 
 
 data(EDdata) 
 obj<-RadialPlotter(EDdata$gl11,ncomp=-1,    
         zscale=seq(20,37,3),kratio=0.6) 
unclass(obj) 

 
   When attempting to fit the finite mixture model 
there is a parameter “maxcomp” that can be used to 
control the maximum allowed number of 
components. The function will search for the number 
of components that gives a minimum Bayesian 
Information Criterion (BIC) value (Schwarz, 1978) in 
the finite mixture model. Here we use sample AL3 
(Schmidt et al, 2012) as an example to find out the 
most appropriate number of components. In the 
following codes, the maximum number of 
components is set to be 15. The radial plot created by 
this function is shown in Figure 6. A plot for BIC and 
maximized logged likelihood values against the 
number  of  components is shown in Figure 7,  which  

 

 
 
Figure 6: Radial plot output for finite mixture age 
model of sample AL3 with function “RadialPlotter”. 
The appropriate number of components that gives a 
minimum BIC value is found automatically at 4. The 
black lines are characteristic ED values for the 
estimated 4 components, respectively. The estimated 
parameters (proportion and characteristic ED value 
for each component) are summarized in table 4. 

 
Figure 7: Variations of BIC and maximized logged-
likelihood values with the number of components for 
sample AL3. The blue points are the BIC values while 
the red points are logged-likelihood values. 
 
 
shows that 4 components given the minimum BIC 
value and should be regarded as the most appropriate 
number of components. 
 
 obj<-RadialPlotter(EDdata$al3, ncomp=0, maxcomp=15,  

zscale=seq(25,85,5), kratio=0.6) 
 print(obj) 
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Table 2: Comparing Duller’s (2007b) results with that obtained using function “calED” in R package numOSL 
(version 1.0). 
 

 R package numOSL Duller (2007b) 
 ED  Curve fitting  Monte Carlo ED  Curve fitting Monte Carlo 

Data 1 0.7 0.7±0.06 0.7±0.07 0.7 0.7±0.06 0.7±0.06 
Data 2 28.5 28.5±0.67 28.5±0.76 28.5 28.5±0.67 28.5±0.75 
Data 3 0.043 0.043±0.0056 0.043±0.002 0.046 0.046±0.004 0.046±0.001 
Data 4 0.71 0.71±0.11 0.71±0.14 0.71 0.71±0.11 0.71±0.13 

 
 
Table 3: Comparing results of decay curve decompositions obtained using function “decomp” in R package 
numOSL (version 1.0) with that obtained using SigmaPlotTM (version 10.0) and R package Luminescence (version 
0.2.4) (Kreutzer et al, 2012) for natural CW-OSL decay curve of sample GL1-1 and LM-OSL decay curve of a 
quartz sample (Li and Li, 2006). a and b are estimated magnitude and decay rate for each signal component, 
respectively. 
 
  R package numOSL SigmaPlotTM R package Luminescence 
Component a b a b a b 

CW-
OSL 

#1 5240 ± 115 6.11 ± 0.16 5240 ± 104 6.11 ± 0.14 5240 ± 213 6.11 ± 0.30 
#2 166.6 ± 25.8 0.59 ± 0.11 166.6 ± 21.0 059 ± 0.08 166.6 ± 6.28 0.59 ± 0.002 
#3 128.3 ± 3.40 0.008 ± 0.001 128.3 ± 2.94 0.008 ± 0.001 128.3 ± 48.0 0.008 ± 0.20 
 residual =43454 residual =43453.65 residual=43454 

LM-
OSL 

#1 20769 ± 668 2.54 ± 0.065 20800 ± 663 2.54 ± 0.068 20771 ± 1759 2.54 ± 0.16 
#2 11787 ± 520 0.51 ± 0.053 11798 ± 619 0.5 ± 0.048 11787 ± 3685 0.51 ± 0.13 
#3 14941 ± 1038 0.05 ± 0.007 14995 ± 1158 0.05 ± 0.006 14943 ± 4633 0.05 ± 0.018 
#4 721057 ± 25497 0.002 ± 0.0001 722659 ± 26461 0.002 ± 0.0001 721118 ± 65749 0.002 ± 0.0002 
 residual =373062.8 residual =373066.02 residual=373063 

 
 
Table 4: Comparing results of finite mixture age model obtained using Java RadialPlotter (vesion 4.4) (Vermeesch, 
2009) and that obtained using function “RadialPlotter” in R package numOSL (version 1.0) for sample AL3 and 
sample GL1-1. The numbers of components (k) that give minimum BIC values are estimated automatically in the 
finite mixture age model. The spreads (sigma) in ED values are set to be 0.0.  
 

sigma=0.0 R package numOSL Java RadialPlotter 
AL3 k=4 k=4 

p1=2.1%±1.8% u1=26.4±1.9 p1=2.1%±1.8% u1=26.4±2.0 
p2=35.1%±6.5% u2=40.1±0.7 p2=35.2%±6.4% u2=40.1±0.7 
p3=40.8%±6.7% u3=52.6±1.2 p3=40.7%±6.7% u3=52.7±1.2 
p4=22.0%±4.9% u4=77.9±2.2 p4=22.0%±9.4% u4=77.9±2.2 

GL1-1 k=3 k=3 
p1=37.6%±10.9% u1=22.0±0.4 p1=38.0%±11.0% u1=22.0±0.5 
p2=50.9%±11.3% u2=25.7±0.4 p2=51.0%±11.0% u2=25.7±0.4 
p3=11.5% ±5.9% u3=33.7±0.9 p3=11.0%±16.0% u3=33.8±0.9 

 
 
 
 
Comparison with other software 
   The reliability of these routines was checked by 
comparing the results with those displayed in 
published articles or obtained using other software. 
The function “calED” was tested using the same data 
and results that were published in Duller (2007b) 
(Table 2); results obtained by function “decomp” are 

compared to that obtained using SigmaPlotTM and R 
package Luminescence (Kreutzer et al, 2012) (Table 
3); function “RadialPlotter” is checked by comparing 
the results with that estimated using Java 
RadialPlotter (Vermeesch, 2009) (Table 4). The 
results of all the tests are comparable between the 
different software packages. 
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Discussion and conclusion  
   Numeric techniques such as Monte-Carlo error 
simulation, and differential evolution are time-
consuming tasks. Decomposing decay curves to 
various components and maximum likelihood 
estimations of Galbraith’s statistical age models 
(especially the minimum age model) are ill-
conditioned mathematical problems; whether it is 
possible to obtain a reasonable result depends heavily 
on the choice of initial parameters. Hence to make 
the program have the capacity to be applicable to a 
wide range of data sets, trying various initial 
parameters is indispensable, which, on the other 
hand, slowdowns the running speed. This problem 
will be especially significant if one wants to use the 
results to do some further analysis. For example, one 
may need to calculate ED values and assess their 
standard errors repeatedly when using the SGC 
method (Roberts and Duller, 2004). Alternatively if 
one hopes to decompose a series of decay curves to 
build a dose-response curve in order to calculate a 
fast-component ED value for data this requires 
general and fast routines. 
   In this paper, we present an R package (numOSL) 
for tackling regular numeric problems that are 
frequently encountered in analyzing luminescence 
data. This is the second R package concerning 
luminescence dating that is available on the 
Comprehensive R Archive Network (CRAN), but the 
work presented here is not a duplicated version for R 
package Luminescence. We focus only on regular 
numeric routines in luminescence dating and aim to 
make those routines more general and robust through 
a mixture programming language of R and Fortran. 
The tests show that results generated by package 
numOSL are comparable to other numeric packages. 
Flexible as it is, however, we must admit that users 
may need some basic knowledge about the R 
programming language when attempting to use an R 
package. So if one only needs to do some basic 
handling or plotting of luminescence data, the best 
choice would be Analyst, which is sufficient for 
rudimentary data processing and is user-friendly. The 
R package numOSL is provided under the General 
Public Licence (GPL3) conditions, which is free 
software and can be downloaded freely from 
http://CRAN.R-project.org/package=numOSL. 
Anyone who finds a bug during the use of this 
package is encouraged to contact the corresponding 
author. 
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