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Abstract 

Estimating the equivalent dose (ED) value is 

critical to obtaining the burial dose for Optically 

Stimulated Luminescence (OSL) dating. In this 

study, a simple Bayesian method is used to assess the 

standard error of an ED value in a linear or an 

exponential model. An ED value is treated as a 

stochastic node that depends on a random variable 

whose posterior distribution can be constructed and 

sampled. The results show that the Bayesian 

approach may improve the precision of an ED 

estimate by avoiding the repeated curve-fitting 

procedure employed in the routine “parametric 

bootstrap” Monte Carlo method. 

Key words: Bayesian method; Markov chain 

Monte Carlo; equivalent dose; standard error 

 

Introduction   

In the commonly adopted single aliquot 

regenerative-dose (SAR) protocol (Murray and 

Wintle, 2000; Murray and Wintle, 2003), the 

standardized natural OSL signal is projected onto the 

growth curve that is constructed using a series of 

sensitivity-corrected regenerative OSL signals to 

calculate the corresponding ED value. A maximum 

likelihood method was used by Yoshida et al. (2000) 

to fit the growth curve with an exponential-plus-

linear model in which the true ED value was treated 

as an unknown parameter, and the standard error of 

the ED value was estimated through the profile 

likelihood function. However, this method may result 

in unreliable estimates (Yoshida et al., 2003) as the 

number of points is not many more than the 

dimension of the problem under consideration 

(Galbraith and Roberts, 2012). This problem led 

Yoshida et al. (2003) to use a “parametric bootstrap” 

method to simulate and fit a number of growth curves 

repeatedly to obtain a more reliable estimate of the 

standard error of an ED value. Duller (2007a) gave a 

detailed introduction about how to estimate an ED 

value and outlined two protocols (i.e. simple 

transformation and Monte Carlo simulation) to assess 

its standard error. Berger (2010) outlined methods 

that incorporate the contribution of errors from the 

characteristic parameters of a growth curve and their 

covariances to estimate standard errors of ED values. 

Classic numeric techniques such as non-linear 

parameter optimization and interpolation are 

routinely employed in these procedures (Peng et al., 

2013). In this study, a simple Bayesian method was 

constructed to estimate ED values and their standard 

errors using measured datasets. The Gibbs sampler 

WinBUGS (Lunn et al., 2013) was employed to 

perform the Bayesian Markov chain Monte Carlo 

sampling, and the estimates were compared to those 

assessed using the Analyst software (Duller, 2007b).  

 

Methods 

     We use xi and yi to denote the i-th regenerative 

dose and measured standardized (i.e. sensitivity 

corrected) OSL, respectively, for each of the i=1 to n 

observations. A saturating exponential growth curve 

may be described as: 

                                

ceay ibx
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)1(ˆ                    (Eqn. 1) 

 

where iŷ denotes the i-th fitted standardized OSL 

and a,b,c are parameters to be optimized. Here a is 

the saturation level (maximum value) of the 

standardized OSL, b is the reciprocal of the saturation 

dose, and c is an offset accounting for potential 

“recuperation” effects. Let y0 and x0 denote the 

natural standardized OSL and the corresponding ED 

value respectively. An estimate of the ED value can 

be obtained by inversing Eqn. 1 analytically: 
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 Eqn. 2 is justified only if a + c > y0, that is, the 

natural standardized OSL y0 must not exceed the 

saturation level of the growth curve. It should be 

noted that even if the natural standardized OSL y0   is 

close to (but does not exceed) the saturation level, the 

randomly selected quantity  ),(~ 000 yNY  (see 

below) may exceed the maximum due to random 

errors controlled by its standard error σ0. For this 

reason, it is best to ensure that the dose to be 

estimated does not exceed the double value of the 

saturation dose (Wintle and Murray, 2006).  

Software Analyst (Duller, 2007b) employs the 

Levenberg-Marquardt algorithm to estimate the 

parameters of a saturating exponential growth curve. 

Once the parameters are determined, an ED value can 

be calculated with Eqn. 2 or an interpolation 

procedure using the natural standardized OSL. The 

“parametric bootstrap” Monte Carlo method that 

assesses the standard error of the ED value involves 

fitting the growth curve and calculating the ED value 

repeatedly using random natural and regenerative 

standardized OSL signals simulated from normal 

distributions whose widths are determined by the 

relevant standard deviations (see Duller, 2007a for 

details). In the following part, we derive a simple 

alternative that avoids the repeated fitting process 

needed in the routine Monte Carlo procedure for 

obtaining the sampling distribution of an ED value of 

a saturating exponential growth curve using the 

Bayesian approach. The ED value whose distribution 

is determined is treated as a stochastic node that 

depends on parameters whose sampling distributions 

can be simulated via a Markov chain Monte Carlo 

method. 

Firstly, note that it is possible to reduce the 

dimension of the problem under consideration to 

contain only parameter b via a linear algebraic 

method (Peng et al., 2013), just as that used in 

deconvolution of decay curves in previous studies 

(Bluszcz, 1996; Bluszcz and Adamiec, 2006). Let wi  

be the weight of yi . For a number of observations and 

a given b value, parameter a can be calculated as:              
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(Eqn. 3)   

 

Similarly, parameter c can be determined by: 
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 (Eqn. 4) 

In a weighted nonlinear least-squares estimation 

we wish to minimize   22 )ˆ( iii yyw , where the 

weight wi are equal to 1 / σi
2
. The estimates obtained 

with a least-squares estimation will be identical to 

those given by a maximum likelihood estimation if 

we suppose that each of the i-th regenerative 

standardized OSL is independent of the others and 

follows a normal distribution with mean iŷ and 

standard error σi, i.e., ),ˆ(~ iii yNy  . Note that iŷ   

is the model based (fitted) standardized OSL and σi  

is the standard error (based on photon counting 

statistics and measurement error) for the measured yi. 

Combining Eqn. 1, 3 and 4, we can treat iŷ as a 

function of the observations (xi, yi, wi ) and parameter 

b, which we denote as ),,,(ˆ bwyxFy iiii

prob(x,y,w|b) is the probability for observing the 

standardized OSL signals y with fixed weights w   at 

doses x if the reciprocal saturation dose has the value 

of b, it can be written as: 
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(Eqn. 5) 

 

Similar to Eqn. 5, prob(b|x,y,w) is the probability 

that b has a given value if the observations are x,y,w, 

and it is called the posterior distribution of b. From 

Eqn. 1-5, it can be seen that if one is able to simulate 

a random variable b based on its posterior 

distribution, then variables a, c, x0 can be regarded as 

stochastic nodes that depend on the value of b. 

According to Bayes’ theorem (Sivia, 1996), the 

posterior distribution of b under condition of the 

observed values is: 

  

)()|,,(pr),,|( bprobbwyxobwyxbprob   

 

(Eqn. 6) 

 

prob(b) is the so-called prior of b, and if it follows a 

uniform distribution (i.e. prob(b)  is a constant), then 

sampling a random variable b from its posterior 

distribution is equal to sampling a b value according 

to the joint-likelihood function determined by Eqn. 5. 

A good choice for the prior of b is the uniform 

distribution U(0,1), which is equal to 1 for all values 

of b between 0 and 1, and 0 for all other values.  
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     This simulation can be easily performed with a 

general Markov chain Monte Carlo sampler, in our 

case the software WinBUGS (Lunn et al., 2013). 

WinBUGS requires as input (1) the measured values 

(x,y,w), (2) the model (i.e. Eqn. 1), (3) the prior 

distribution for the parameter to be simulated, in our 

case U(0,1) for parameter b, (4) Eqn. 3-4 to reduce 

the dimension of the model, and (5) Eqn. 2 to allow 

calculation of the node x0. The software creates 

automatically a random b value according to Eqn. 5. 

Parameters a, c depend on the value of b (see Eqn. 3-

4). They are the by-product of the simulation and are 

regarded as nodes. By using randomly generated 

natural standardized OSL values Y0 ~N(y0,σ0) and the 

nodes a and c, the sampling distribution of ED values 

(i.e. x0) can be monitored according to Eqn. 2. That 

means the distributions of these quantities can be 

obtained iteratively, i.e. each time a value of b is 

generated and the values of a and c are calculated, 

and the value of the ED can be monitored. After a 

large number of simulations, we can infer statistical 

quantities such as the mean, the median, the standard 

deviation, and the 95% confidence interval of these 

parameters. There are certain benefits to reduce the 

dimension of the problem to contain only one 

independent variable. Firstly, this makes the posterior 

distribution of b be mainly dominated by the 

likelihood function and the prior is almost irrelevant, 

as a number of data points are used to simulate only 

one parameter. Another advantage of reducing the 

dimension lies in that it facilitates the sampling 

process. The Gibbs sampler may fail to converge and 

the generated samples may have poor mixing 

properties if there are many quantities that need to be 

sampled, as parameters in this model are highly 

correlated with each other.  

The same methodology would apply to a linear 

growth curve by setting the slope as the independent 

variable and treating the intercept and ED value as 

nodes that depend on the value of the slope. Also, the 

procedure may be modified to apply to a quadratic 

growth curve. However, this method is inapplicable 

to an exponential plus linear model, as this model 

cannot be inversed analytically as x = f 
-1

(y)
 
  and 

software WinBUGS does not have a standard 

function to do interpolation of this kind.  

 

Results of Comparisons and Discussions 

   Measured datasets from 35 aliquots of samples 

GL1-1 and 36 aliquots of sample GL1-2 (Peng and 

Han, 2013) were analyzed. Decay curves of these two 

samples have variable OSL intensities (Peng et al., 

2014). The net OSL intensity was calculated using 

integration of the first 0.64s after subtracting 

background from the last 50 channels in a decay 

curve. The standard error of the sensitivity-corrected 

OSL was based on counting statistics and a 

measurement error of 2%. Datasets from sample 

GL1-1 and GL1-2 were fitted with a saturating 

exponential and a linear growth curve, respectively. 

We compared the estimates derived from the 

Bayesian method outlined above using software 

WinBUGS (version 1.4.3) with the results of the 

“parametric bootstrap” Monte Carlo method 

described by Duller (2007a) using software Analyst 

(version 4.12). Software WinBUGS was called in 

batch model via the package R2WinBUGS (version 

2.1-19) (Sturtz et al., 2005) for the R statistical 

software so that datasets can be easily loaded and 

analyzed. The outputs are summary statistics (the 

mean, the standard deviation, the 95% confidence 

interval, etc.) for the relevant parameters of the 

growth curve and the desired ED value. Scripts for 

running the models are presented in the 

supplementary. In software Analyst, the number of 

Monte Carlo iterations was set equal to 1,000. In 

software WinBUGS, each dataset was simulated 

through 50,000 iterations and the posterior inference 

was based on 8,000 iterations. As is common 

procedure with these types of simulations the initial 

10,000 iterations were discarded (“burn-in”) and 

every 5-th iteration was retained (“thinning”). The 

kernel density plots of the parameters derived from 

the exponential model simulation for an aliquot of 

sample GL1-1 are shown in Figure 1. Related trace 

plots of the variations of parameters and ED value 

with the number of iterations are shown in Figure 2. 

The unimodal and symmetric distribution pattern 

(Figure 1) and good mixing property (Figure 2) 

demonstrated in the simulated b value (also shown in 

the ED value) indicate that the simulation appears to 

converge. To test the program we also attempted to 

fit an exponential model to a number of linear growth 

curves. Our analysis suggests that for a growth curve 

that is linear or approximately linear, the sampling 

distribution of the saturating OSL (i.e. parameter a) 

may seem to be very inhomogeneous and highly 

variable if an exponential model is applied. But even 

in this case, the posterior of b and the resultant ED 

values can still converge to a unimodal distribution. 

Figure 3 (A-B) shows a linear growth curve for 

an aliquot of sample GL1-2 and an exponential 

growth curve for an aliquot of sample GL1-1 that are 

fitted using the Bayesian approach. A comparison of 

ED values and their standard errors estimated using 

the “parametric bootstrap” Monte Carlo method and 

the simple Bayesian method is presented in Figure 3 

(C-F). A paired two-tailed t-test with a 1% 

significance level is used to test the significance of 

difference between the results of the two methods. 

For datasets from sample GL1-1 that are fitted with 

an exponential model, the t-values calculated using 

the difference of ED values and the difference of 

errors of ED values are 0.16 and 5.06, respectively,  
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Figure 1: Kernel density plots for the ED value and characteristic parameters of a saturating exponential growth 

curve using an aliquot from sample GL1-1. Each plot is drawn using 8,000 samples. The plots show unimodal 

distributions. Note: The density values plotted on the y-axis should not be confused with probability distributions 

and can have values larger than 1.

  

  

 

 
 

 

Figure 2: Variations of simulated ED values and characteristic parameters with the number of iterations in an 

exponential model for an aliquot from sample GL1-1. Each plot is drawn using 8,000 samples. Throughout the 

simulation variables are evenly spread over their feasible spaces, reflecting good mixing properties.
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Figure 3: A linear growth curve for an aliquot of sample GL1-2 (A) and an exponential growth curve for an aliquot 

of sample GL1-1 (B) that are fitted using the Bayesian method. C and D: Comparisons of ED values obtained using 

the Monte Carlo method and the Bayesian method for samples GL1-2 and GL1-1, respectively. E and F: 

Comparisons of standard errors of ED values assessed using the Monte Carlo method and the Bayesian method for 

samples GL1-2 and GL1-1, respectively. 

 

and the critical t-value is 2.73. This demonstrates that 

there is no significant difference between the two sets 

of ED values, but there are obvious differences 

between the standard errors at a significance level of 

1%. Similar results are found in estimates from 

sample GL1-2 that have a theory t-value of 2.72. ED 

values estimated using the two different methods are 

comparable, though the ED value estimated by 

software Analyst is based on solely the natural 

standardized OSL while the ED value obtained from 

the Bayesian method is the mean value of all 

resulting samples in node ED. This consistency may 

result from the fact that software Analyst assigns 

unequal weights to the observations using inverse 
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variances so the shape of the resultant growth curve 

is akin to that fitted by a maximum likelihood 

estimation using Eqn. 5. However, it turned out that 

for the analyzed aliquots almost all standard errors of 

ED values assessed by the Bayesian method using 

software WinBUGS are smaller than that estimated 

by the “parametric bootstrap” Monte Carlo method 

using software Analyst, though in general the 

differences are small. The uncertainties arising from 

photon counting statistics (Galbraith, 2002; Li, 2007; 

Adamiec et al., 2012; Galbraith, 2014), the 

instrument reproducibility (Truscott et al., 2000; 

Thomsen et al., 2005), and the growth-curve fitting 

error (Jacobs et al., 2006; Duller, 2007a) are the three 

major source of uncertainties involved in estimating 

an ED value. The differences of errors between the 

two methods cannot be caused by the first two 

sources of error that influence the uncertainty of the 

standardized OSL if the same dataset is analyzed. For 

a Monte Carlo method in which growth curves are 

simulated and fitted repeatedly, bias is introduced in 

each iteration. But the Bayesian method in which the 

ED value is treated as a node that depends on a single 

variable that can be sampled from its posterior 

distribution avoids the curve-fitting process and may 

result in a reduction in the standard error of an ED 

estimate hence an improvement in precision. 

A predominate advantage of the simple Bayesian 

protocol is that a user need not pay much attention to 

the initialization of parameters, unlike that 

encountered when applying a classic nonlinear 

method (Peng et al., 2013). Another benefit of the 

Bayesian method is the flexibility with which 

posterior inferences can be summarized (Gelman et 

al., 2013). The Bayesian approach outlined above can 

be modified to be more flexible to obtain more 

variable ED distributions. McCoy et al. (2000) 

observed that individual grains of quartz exhibit log-

norm distributions in their OSL intensities. Thus a 

log-norm distribution may be assumed for the 

standardized OSL (Yoshida et al., 2003) when 

simulating an ED value. Whether normal or log-

normal distributions are assumed will make little 

difference if the uncertainty of a sensitivity-corrected 

OSL is relatively small (Galbraith and Roberts, 

2012).  It is also possible to specify the standardized 

OSL to have constant relative uncertainty            

(i.e.σi = kyi ), then the estimate will be equal to that 

given by a weighted nonlinear least-squares method 

with weights 1/yi
2
 if we ignore the common constant 

(Thompson, 2007). Moreover, if few outliers are 

presented in a number of data points, the standardized 

OSL may be assumed to follow a heavily-tailed 

distribution (say, the t-distribution) so that outliers 

can be accommodated. Additionally, in all the 

preceding analysis, we have implicitly assumed that 

the regenerative dose values are known exactly. But 

in fact, this assumption may be far from the truth as 

the precision of a given dose is instrument-

dependent. If the associated error-bars for the x-

coordinate are not known, then we may perform the 

simulation by assuming that they have constant 

relative uncertainty, say, 1% or 2%, and the resultant 

ED values will be more variable in this way. 

However, it should be noted that the sensitivity of the 

model to the imposed assumptions needs to be 

carefully checked, and that any conflict between the 

assumptions and the data may crash the simulation or 

result in absurd posteriors within a Bayesian 

framework. It is essentially the user’s responsibility 

to ensure that the resulting posterior distribution is 

correct when special priors or assumptions are 

assumed.  

 

Conclusion 

   A simple Bayesian approach is used to estimate ED 

values and assess their standard errors for a linear and 

a saturating exponential growth curve. The resulting 

ED values are comparable to those obtained by a 

weighted nonlinear least-square fit. This method 

avoids the repeated curve-fitting procedures required 

by the “parametric bootstrap” Monte Carlo protocol 

in error assessments, and may result in an 

improvement in the precision of an ED value. 
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