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1. Introduction
There has been some discussion on the estimation of OSL

ages in the presence of beta dose rate heterogeneity. For
example, Jacobs et al. (2008) used an ‘adjusted dose rate’
method to account for observed equivalent doses that ap-
peared to follow a finite mixture distribution, while Guérin
et al. (2013) argued that an estimate based on an average or
central age was more appropriate. I recently commented on
the latter article to say, among other things, that the math-
ematical argument presented there did not justify that con-
clusion and that further statistical analysis was needed (Gal-
braith, 2015). In this note I will consider dose rate hetero-
geneity from a statistical point of view.

2. OSL age estimates
An OSL age is usually estimated as a ratio: an equivalent

dose divided by a dose rate, each of which is estimated sep-
arately. The numerator of that ratio, the equivalent dose, is
usually some sort of average or representative value obtained
from a sample of mineral grains, that is intended to represent
a radiation dose of interest — such as the radiation energy
absorbed by the mineral grains in the sample since they were
last exposed to sunlight. A variety of methods can be used,
depending on the context, to estimate that numerator, includ-
ing the use of common age, central age, minimum age and
finite mixture models. Such models may be expressed either
in terms of observed equivalent doses or in terms of their
logarithms, depending on whether the dominant sources of
variation are additive or multiplicative. Details and rationale
of these models can be found in Galbraith & Roberts (2012).

There is a separate industry devoted to estimating the
denominator of that ratio, i.e., the relevant ‘environmental’
dose rate. This is typically a weighted sum of contributions
from several sources, including alpha, beta and gamma ra-
diation, and cosmic rays, all of which are estimated or mea-
sured separately in the field and in the laboratory, using a

variety of emission counting techniques and techniques that
directly measure elemental concentrations of U, Th and K. In
practice, a single dose rate is usually obtained that represents
an ‘average’ value pertaining to the sample location and its
near environment. It is recognised that individual grains in
the sample might experience different dose rates, especially
from beta sources which can vary across small spatial dis-
tances, but dose rates experienced by individual grains are
not measured by the current standard techniques. Neverthe-
less such variation in dose rates will be reflected to some
extent in the observed single-grain equivalent doses. What
implications might this have for OSL age estimation?

3. A common age model with additive errors
Suppose that we have observed equivalent doses for n

mineral grains along with their empirically determined stan-
dard errors. Denote these by yi and si, respectively, for
i = 1,2, . . . ,n. Let us consider the simplest case where we
think that every grain has the same true age t. If the dose
rates vary between grains, then the observed equivalent doses
will vary partly because of this and partly for other reasons,
including natural variation and measurement error. We can
express this as

yi = tξi + ei (1)

where ξi is the unobserved dose rate experienced by grain i
and ei is an unobserved random ‘error’ drawn from a distri-
bution with mean zero and standard deviation σi, say. I have
used the Greek notation ξi, rather than a friendlier symbol
such as xi, to remind us that the individual dose rates are not
observed. The error standard deviation σi will include varia-
tion from all sources other than varying dose rates — includ-
ing natural variation between grains and measurement error
— and will typically be larger than si. We should remember
too that the assumption that the error distribution has mean 0
is not trivial.

There is little we can do in practice with equation (1),
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as ξi is not observed or measured. Some further theoretical
analysis might be done by making assumptions about the sta-
tistical distribution of the dose rates, but before doing so, it
is worth noting that if we average both sides of equation (1)
we get

ȳ = tξ̄ + ē (2)

where ȳ, ξ̄ and ē are the average observed equivalent dose,
unobserved dose rate and unobserved error, respectively, for
the n grains. A similar equation could be obtained by tak-
ing a weighted average: that is, we could regard ȳ, ξ̄ and
ē in (2) as corresponding weighted, rather than unweighted
(or straight), averages. In either case, ē is also a random ‘er-
ror’ drawn from a distribution with mean zero. It follows
that if we could estimate ξ̄ , we could then estimate the age
t by dividing ȳ by that estimate of ξ̄ ; that is, by dividing an
(unweighted or weighted) average equivalent dose by an esti-
mate of the corresponding (unweighted or weighted) average
dose rate experienced by the n grains in question.

One problem with the above is that ξ̄ , the average dose
rate for the n grains in our sample, may differ somewhat
from the average environmental dose rate that is actually
measured, which is an average for a much wider population
of grains. In other words, the dose rates for the n sampled
grains need to be representative of those for the population
for which the average dose rate is actually measured (i.e., the
population of all grains in the sample location and its near
environment), which might or might not be the case in prac-
tice.

Equations (1) and (2) above are analogous to Equations
(1) and (2) in Guérin et al. (2013) but are expressed here as
a statistical model rather than as relationships between ‘true’
values. The above argument (with the caveats mentioned)
supports their suggestion that, when all grains have the same
true age, then this age may be estimated using an average or
central age, regardless of how the individual dose rates vary.
However, that does not mean that this is the best method or
even that it is necessarily a good one.

4. Modelling the dose rate distribution
The model equation (1) could be extended to specify a dis-

tribution for the single-grain dose rates ξi. In practice there is
usually very little independent information about what form
this distribution might take, other than what can be seen in
the observed equivalent doses. Let us consider two simple
possibilities.

1. A normal distribution. For example, in the absence of
other information, we might assume that ξi was drawn from a
normal distribution with mean µξ and standard deviation σξ ,
independently for each grain. Then equation (1) can usefully
be expressed as

yi = tµξ + t(ξi −µξ )+ ei . (3)

We might regard the measured environmental dose rate as
an estimate of µξ , i.e., the mean dose rate for the popula-
tion from which the grains were sampled. Then the quan-
tity t(ξi − µξ ) would be another component of error, from

a normal distribution with mean 0 and variance t2σ2
ξ

. If ei

was also from a normal distribution, and independent of ξi,
then the overall error would be from a normal distribution
with mean 0 and variance t2σ2

ξ
+σ2

i . In that case, the opti-
mal OSL age estimate would be that obtained from the ‘un-
logged’ version of the central age model.

In other words, making this quite natural assumption
about the unobserved single-grain dose rates leads directly
to the central age model for optimal estimation of the burial
dose and hence the burial age. The dispersion parameter in
this central age model will include variation between single
grain dose rates, as the above analysis shows.

2. A two component mixture. Another possibility might
be to assume that the dose rates come from a two-component
mixture distribution where ξi takes the value µξ 1 with prob-
ability p or µξ 2 with probability 1− p, say. Then equation
(1) could be written as

yi = tµξ 1ui + tµξ 2(1−ui)+ ei (4)

where ui is a bernoulli random variable that takes the value
1 with probability p and 0 with probability (1− p). So the
equivalent doses also have a two component mixture distri-
bution with component means µ1 = tµξ 1 and µ2 = tµξ 2. The
common age t is given by several expressions, including

t =
pµ1 +(1− p)µ2

pµξ 1 +(1− p)µξ 2
=

µ

µξ

,

where µ and µξ are the mean equivalent dose and mean dose
rate, respectively, for the population from which the grains
were drawn. So, as usual, the age t can be estimated by di-
viding an estimate of µ by an estimate of µξ .

One could imagine estimating µ either by fitting a two-
component mixture to estimate p, µ1 and µ2, and hence µ =
pµ1 +(1− p)µ2, or by simply using an average equivalent
dose, ignoring the two-component mixture structure. In the
latter case one might consider using either an unweighted
average or a weighted average with weights proportional to
the reciprocals of the error variances. What are the relative
merits of these methods?

In theory, if the data really do come from a two-
component mixture distribution, with a well specified error
distribution, then it must be optimal to use that model for
estimation by maximum likelihood, say. Nevertheless it is
useful to consider this in more detail.

Suppose that, as before, ei has a normal distribution with
mean 0 and standard deviation σi for grain i. Consider first
the hypothetical case that σi is the same for all grains (σi = τ ,
say) whether or not they are from the same component. Then
weighting by 1/σ2

i is the same as weighting by 1/τ2, i.e.,
using a straight (unweighted) average. In that case, it can be
shown that this gives exactly the same estimate of µ as that
obtained by fitting the two-component mixture.

Now suppose that σi is the same for all grains within the
same component, but different for grains in different com-
ponents. That is, σi = τ1 if grain i is from component 1
and σi = τ2 if grain i is from component 2. Then it can
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be shown that using an unweighted average of the equivalent
doses will still produce exactly the same estimate of µ as that
obtained by fitting the two-component mixture. But weight-
ing by 1/σ2

i (i.e., by 1/τ2
1 and 1/τ2

2 ) will produce a different
estimate, and it is easy to construct cases where such weight-
ing produces a grossly biased estimate. This is because the
unweighted mean implicitly combines the observations from
the different components in the same proportions as those
estimated by fitting the two-component mixture, whereas the
weighted mean does not, unless τ2

1 and τ2
2 happen to be in

the ratio of 1− p to p (which is unlikely).
The usual situation in practice is that the error standard

deviations σi differ across grains, both within and between
components. In that case, the estimate of µ obtained by
fitting a two component mixture does differ from the un-
weighted mean equivalent dose — but typically not by very
much if the differences between σis in the same component
are small compared to those in different components. On
the other hand, weighting by 1/σ2

i will generally produce a
rather different estimate.

Of course a more detailed numerical analysis would be
needed to quantify these differences, but a general message
is that if the yis come from a two component mixture, then it
could be misleading to combine them by weighting them by
the reciprocals of their error variances ignoring the mixture
structure, which is what the central age model does.

Finite mixture models are often used to estimate the pa-
rameters of specific sub-populations. The use here of a two
component mixture as a form of ‘error’ distribution differs
in concept, though it is not unknown in statistical applica-
tions where it has sometimes been used to deal with samples
containing small numbers of outliers or ‘unusual’ values.

In the ‘adjusted dose rate’ method of Jacobs et al. (2008),
a finite mixture model was fitted to the equivalent doses but
the age was estimated from just one of the component means
(µ1, say) which was divided by an ‘adjusted dose rate’ (i.e.,
an estimate of µξ 1). That method, as I understand it, was
used as an attempt to deal with equivalent doses that were
thought to come from well-bleached grains that were buried
at the same time but looked as if they were from a finite mix-
ture distribution with one component containing a large ma-
jority of the grains. The rationale behind that method merits
discussion, but there is no reason in principle why it should
not give a valid estimate. Reasons for focusing on just one of
the mixture components might include the possible unrelia-
bility of data in the other components, though this also raises
the question of how to best estimate a dose rate specific to
that component.

5. Models with multiplicative errors

Sometimes the dominant source of error variation in ob-
served equivalent doses is multiplicative rather than additive.
Signs of this are a strong positive skewness in a histogram
of the yis and a strong positive association in a scatter plot
of si against yi. Then an equation analogous to (1) may be

expressed as
yi = tξieui , (5)

where ui is a random error drawn from a distribution with
mean 0 and standard deviation τi, say. This could be re-
written as an additive model for the log doses:

logyi = log t + logξi +ui . (6)

A parallel analysis to that in the previous section can be made
for the model equation (6). For example, assuming that the
log dose rates are a random sample from a normal distribu-
tion would lead to the usual ‘logged’ version of the central
age model as being the optimal method.

It should be emphasised that equations (1) and (5) rep-
resent the same physical relationship. The only difference
between them is in their ‘error’ distributions, which lead to
different methods of estimating the burial dose µ . It would
be possible to have either an additive error or a multiplicative
error also for estimating the environmental dose rate µξ , and
there is no reason in principle why you should not have an
additive error for the estimated dose rate and multiplicative
errors for the equivalent doses. It would be wrong to say, for
example, that because the dose rate is an arithmetic average
of physical quantities then one should use an arithmetic av-
erage of equivalent doses to estimate the burial dose µ . In
short, the appropriate method of estimation depends not only
on the definition of the parameters but also on the error dis-
tributions.

6. Summary remarks
I have tried to highlight some statistical issues relating to

how OSL ages are estimated when dose rates vary between
grains, as is often the case for the beta dose rate contribu-
tion. Most of the statistical concepts I have used here are
explained briefly in Galbraith & Roberts (2012, Appendix
A). A key aspect is to identify the relevant parameters: not
only the equivalent dose that corresponds to the burial dose
(or the dose of interest), but also the relevant dose rate that
corresponds to that equivalent dose. A second key aspect is
that appropriate methods of estimating these parameters de-
pend of the errors associated with individual measurements.

I have used models with additive errors for illustration. In
that case, the assumption that the unobserved single grain
dose rates follow a normal distribution leads to the ‘un-
logged’ central age model for the equivalent doses. But the
central age model is not necessarily appropriate for other
dose rate disributions. Models with multiplicative errors
may often be more appropriate in practice — and are in
some ways simpler because relative errors do not depend
on the scale of measurement — and the same issues arise
there. In particular, the assumption that the unobserved sin-
gle grain dose rates follow a log-normal distribution leads to
the ‘logged’ central age model for the equivalent doses. Such
models could be generalised to include situations where the
OSL ages vary between grains. Their usefulness depends
partly on how, or how much, any heterogeneity in dose rates
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affects the estimation of the relevant equivalent dose, and in-
deed whether there is other relevant information about the
dose rates that could be obtained, particularly about the na-
ture or form of the dose rate distribution in any given appli-
cation.

However, I would take issue with the idea that “modelling
of the dose rate distribution is both unnecessary and undesir-
able” (Guérin et al., 2013, page 315). The simple analysis
above has produced some useful insight, not only in sug-
gesting appropriate methods of estimation in different situ-
ations but also in identifying a component of error variance
that might be reduced if it were possible to measure single-
grain dose rates. The assertions that such modelling “cannot
improve accuracy, and must introduce additional uncertain-
ties” (Guérin et al., 2013, page 315) are also incorrect, as
explained above.

Statistical models are important not only for providing a
basis for assessing the merits of any given method of esti-
mation, but also for assessing sources of variation. The rel-
evance of a statistical model to a given situation depends on
the scientific context and it is not always easy to judge what
models are most appropriate. Sometimes it can help to try
more than one method. If different methods result in simi-
lar estimates, then some reassurance may be achieved; if not,
then it may be illuminating to find out why.
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