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Abstract
A function named analyse baSAR() was writ-
ten using the statistical programming language
R and its code is now available within the R
package ’Luminescence’. The function allows
the application of the Bayesian hierarchical
model ’baSAR’ proposed by Combès et al.
(2015) and comes with additional features to
analyse luminescence data in a straight forward
way. Example scripts are provided showing the
possible numerical and graphical outputs.

Keywords: R, Bayesian statistics, Lumines-
cence dating, Hierarchical model, SAR

1. Introduction
Analysing the distribution of obtained equivalent doses

(De), to estimate a De and its standard error (se(De))
best representing the data after applying the single aliquot
regenerative-dose (SAR) protocol (Murray & Wintle, 2000),
either on single or multi-grain aliquots, is a vital step of the
luminescence dating process. A summary of commonly ap-
plied statistical approaches in the luminescence dating com-
munity with their individual limitations is given by Galbraith
& Roberts (2012).

Additionally, several differing suggestions have been
made in the past to use Bayesian statistics (Bayes 1773; cf.,
e.g., Buck et al. 1996; Gelman et al. 2013 for a general
introduction) for particular problems while analysing lumi-
nescence data and best estimate the De (or age) of particu-
lar interest, with regard to the underlying geochronological

problem, e.g., Rhodes et al. (2003); Huntriss (2008); Peng &
Dong (2014); Cunningham et al. (2015); Zink (2015).

It is out of the scope of this paper to compare or repeat
details of the so far presented approaches, but we will rather
focus on the work presented by Combès et al. (2015). They
proposed an alternative to the central age (equivalent dose)
model (usually termed: CAM) by Galbraith et al. (1999) us-
ing Bayesian statistics. The model by Combès et al. (2015)
comprises a hierarchical structure in the sense that their cen-
tral equivalent dose (in analogy to Combès et al. 2015 here-
after D) is not directly deduced from the individual De val-
ues and their associated standard errors, as it is the case
in the CAM model, but (a) from the normalised lumines-
cence signal ratios (Lx/Tx) of each aliquot or grain leading
to these individual values, and (b) from the type of function
representing the distribution of the De values; the model is
termed ’baSAR’ henceforth. Combès et al. (2015) have cho-
sen a Cauchy distribution to describe the dispersion around
D, as it “[...] has the advantage of being close to a Gaus-
sian near the mode and of having heavy tails [..]“ (Combès
et al., 2015, p. 67) and with this allowing more spread in the
data than a log-normal (or normal) distribution and ensures a
greater statistical robustness. The D value defines the mode
of the distribution and another parameter, σD, measures the
dispersion of the individual doses around D.

Nevertheless, though the proposed baSAR-model, orig-
inally implemented using the language BUGS, has been
tested on a series of samples (Guérin et al., 2015) and proved
some advantages over the CAM model, its use by the lumi-
nescence community was so far limited due to a lack of any
available user-friendly and flexible code. Here, we present
the function analyse baSAR() available in the R (R Devel-
opment Core Team, 2016) package ’Luminescence’ (version
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Figure 1. Possible input and output scenarios implemented in the function analyse baSAR(). Alternatively of a BIN/BINX-file that is
automatically imported using the function read BIN2R() the user can provide the RisoeBINfileData-object produced by this function.
This avoids potentially time consuming repeated imports of the measurement data in scenarios where the user wants to play with the function
arguments. Furthermore, instead of an XLS-file a data.frame of similar structure is accepted as input. For further details see main text.

>= 0.6.4, Kreutzer et al. 2012 and Kreutzer et al. 2016, see
also Dietze et al. 2013 and Fuchs et al. 2015 for guides and
introductions). The function is not a copy & paste implemen-
tation of the proposed model, but a consequent enhancement
of the published model, combined with the data processing
features by the R package ’Luminescence’.

With our contribution we provide technical details on the
implementation of the analyse baSAR() function and run-
ning examples that can directly be applied by the user on
own data. The code is provided under General Public Li-
cence (GPL-3) conditions.

Below R code snippets are given as separated listings and
typed in monospace letters. If not stated otherwise men-
tioned R functions() are part of the R package ’Lumines-
cence’. Function calls from other R packages are indicated
by ::, e.g., readxl::read excel().

2. Enhancement and implementation

2.1. Enhancing the ’baSAR’-model

The function analyse baSAR() includes all functionali-
ties developed in the baSAR-model and enhances it as sug-
gested by Combès et al. (2015) with regard to additional fit-
ting functions and supported probability distributions.

• While the mathematical function fitting the dose re-
sponse curve to pairs of Lx/Tx ratios and dose values
in the original baSAR-model was limited to (I) a single
saturating exponential + linear term

fΘ=(a,b,c,d) : x→ d +(c · x)+
(

a(1− exp(
−x
b
))
)

(1)

with its curve parameters a,b,c and d, the function
analyse baSAR() includes a further two mathematical
functions to describe the dose-response curve:

(II) a linear function

fΘ=(c,d) : x→ d +(c · x) (2)

(III) a single exponential function

fΘ=(a,b,d) : x→ d +
(

a(1− exp(
−x
b
))
)

(3)

• furthermore, the user now has the option to include the
recycling point(s) in the calculation, and to force the
dose response curve through the origin,

• and finally, in order to improve the application of the
Bayesian statistics to the luminescence data, the func-
tion supports, in addition of the Cauchy distribution, a
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Gaussian (normal) distribution and a log-normal distri-
bution which can be chosen to characterise the disper-
sion of the individual De values.

2.2. Implementing analyse baSAR()

From a technical point of view, the analyse baSAR()

function uses the software JAGS (Just Another Gibbs Sam-
pler; Plummer 2003) available via the R interface ’rjags’
(Plummer et al., 2016), which is a tool for the analysis of
Bayesian hierarchical models using a Markov chain Monte
Carlo (MCMC) simulation. The software JAGS needs to
be installed separately and additionally to the R environ-
ment. Internally the function is separated in two parts: (I) a
Bayesian core, i.e., the implementation of the baSAR-model
and (II) a data preprocessing part (cf. Fig. 1).

This separation allows rather complex input/output sce-
narios and flexible data handling. Fig. 1 drafts a generalised
view of possible workflow scenarios. Running examples
with its function arguments are given in Sec. 3 and in the
supplement. The subsequent numbering was chosen in ac-
cordance with the one (numbers in the blue circle) in Fig. 1.

1. The function distinguishes between two different in-
put scenarios: (A) raw measurement data, e.g., a
BIN/BINX-file, which is the standard output of Risø
TL/OSL readers and (B) an output object produced by
the function itself. If the latter one is provided the func-
tion automatically starts with the Bayesian calculation
and the data preprocessing is skipped. If measurement
data are provided (BIN-file), the measurement data are
imported into the R session. For BIN/BINX-files this is
done using the function read BIN2R().

2. Along with the measurement data (A) an MS ExcelT M

(file ending either *.XLS or *.XLSX)1 can be pro-
vided to limit the measurement data to the aliquots
specified in the table (see screenshot in Fig. 2), i.e.
the data processing will be continued with a reduced,
previously selected dataset. If no XLS-file is pro-
vided (B) the data will be piped to the function
verify SingleGrainData()2 to remove dim aliquots
(not curves!), as such aliquots would bias the output.
Removing dim or zero light grains (aliquots) is a usual
task while dealing with single grain data.

Once the data had been selected with either the one
(A) or other (B) approach, Lx/Tx ratios are cal-
culated from the single curves using the function
calc OSLLxTxRatio(). The data would be now ready
for the baSAR-model, but they will be first piped to the
function plot GrowthCurve() to calculate De and D0
values and, if wanted, it allows a visual feedback of the
data. Nevertheless, these values (De and D0) are not
taken into account for the subsequent modelling, but

1The import is realised using the function readxl::read excel()

(Wickham et al., 2016)
2Type ?verify SingleGrainData in the R terminal for further infor-

mation.

are returned and can be used for further data subsetting,
e.g., sorting grains by D0 values.

3. After the data preprocessing is finished the ordinary
Bayesian modelling starts as described by Combès et al.
(2015) internally using the package ’rjags’ and the soft-
ware JAGS. The result is a comprehensive object of type
RLum.Results (see supplement for examples and more
details).

4. The results of the modelling can be used for further
data processing or directly piped for another run into the
function analyse baSAR() itself. As written above, in
the latter case the entire data preprocessing is skipped
and the function jumps into the baSAR-model core, re-
membering the previous set function arguments, but the
user can modify parameters on request for the Bayesian
calculation, e.g., number of MCMC runs.

Figure 2. Screenshot of an example MS ExcelT M sheet that can be
provided as input to limit the number of aliquots according to the
disc and grain number. As shown in the figure empty rows are al-
lowed to structure the table and they will be ignored during the im-
port.

The injection of own and/or modified models is possible
in every scenario (see below). The current implementation is
limited to BIN/BINX-files only.

3. Working example
In this section a simplified example of the function in-

put and output is given for the current implementation. The
details given for specific function arguments are intention-
ally vague. They may change in the future due to a contin-
uous development process and would here remain of limited
use for the reader. An always up-to-date and detailed de-
scription of the function arguments can be found by typing
?analyse baSAR in the R terminal.

3.1. Constructing the function call
In the following function call, the user provides a list of

BIN-files (argument object) that were measured on differ-
ent readers or at different dates.

1 r e s u l t s <− a n a l y s e baSAR (
2 o b j e c t <− l i s t (
3 ” Bin1 . b i n ” ,
4 ” Bin2 . b in x ” ,
5 ” Bin3 . b i n ” ) ,
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As usually irradiations are carried out as durations and not
as doses, the dose rate and its standard error of the irradiation
source (argument source doserate) needs to be provided3

for each BIN-file. The standard error of the source dose rate
is considered to be systematic and is therefore only added at
the end to the standard error of the D.

6 s o u r c e d o s e r a t e = l i s t (
7 c ( 0 . 1 0 , 0 . 0 0 1 ) ,
8 c ( 0 . 1 3 , 0 . 0 0 2 ) ,
9 c ( 0 . 1 2 , 0 . 0 0 1 ) ) ,

As stated above, to increase the flexibility of the cal-
culation, the user can pass a list of discs/grains, each
pair defining an aliquot, to be included in the calculation.
This is possible either in the form of a data.frame or
in using an MS ExcelT M sheet. The user might also pre-
fer to use the verify SingleGrainData() function, in-
cluded in the analyse baSAR() function, which automat-
ically provides a list of grains exhibiting luminescence sig-
nals significantly higher than a pre-selected threshold (see
?verify SingleGrainData). Regardless of this option,
in this example an XLS-file (argument XLS file) is passed
to the function comprising a sheet (sheet) with a pair list
of discs and grains. This selection is further limited to
the aliquots 1 to 30 by aliquot range. Please note that
currently the argument aliquot range works only if an
XLS-file is provided or the output of the function itself
analyse baSAR() is provided as input.

10 XLS f i l e = ” ˜ / B a y e s i a n / S i t e / Sample . x l s ” ,
11 s h e e t = ” Disc−Grain− l i s t ” ,
12 a l i q u o t r a n g e = c ( 1 : 3 0 ) ,

In the next step signal and background integration limits
are set and additional uncertainty (sig0) is added to each
resulting Lx/Tx value, the over-dispersion of the count distri-
bution (sigmab) is set to 0 in this example.

13 s i g n a l . i n t e g r a l = c ( 5 : 1 0 ) ,
14 s i g n a l . i n t e g r a l . Tx = c ( 5 : 1 0 ) ,
15 background . i n t e g r a l = c ( 4 0 : 6 0 ) ,
16 background . i n t e g r a l . Tx = c ( 4 0 : 6 0 ) ,
17 s igmab = 0 ,
18 s i g 0 = 0 . 0 2 5 ,

Controlling the Bayesian modelling is an important op-
tion and several arguments are provided to control the pro-
cess. Here, namely the chosen probability distribution

(’cauchy’, ’normal’ or ’log normal’), the number of
Markov chain Monte Carlo runs (n.MCMC; default 100,000)
and the applied fitting function (fit.method) and its options
(fit.force through origin and
fit.includingRecyclingPoints). The fitting arguments
chosen here are also used during the data processing.

Deeper control of the modelling process is granted via ar-
gument provided via the method control. In the example
the number of used MCMC is set.

19 d i s t r i b u t i o n = ” normal ” ,
20 n .MCMC = 100000 ,
21 f i t . method = ”EXP” ,

3source doserate is a required argument; leaving this argument
empty will stop the function from running.

22 f i t . f o r c e t h r o u g h o r i g i n = TRUE,
23 f i t . i n c l u d i n g R e c y c l i n g P o i n t s = TRUE,
24 method c o n t r o l = l i s t (
25 n . c h a i n s = 3 ) ,

The last arguments to be set control various termi-
nal (verbose) and plot output (plot, output.plot,
plot reduced) options.

27 p l o t = TRUE,
28 o u t p u t . p l o t = TRUE,
29 p l o t r e d u c e d = TRUE,
30 v e r b o s e = TRUE
31 )

The complete function call (putting the single snippets to-
gether) becomes:

Listing 1. Example combined function call
1 r e s u l t s <− a n a l y s e baSAR (
2 o b j e c t <− l i s t (
3 ” Bin1 . b i n ” ,
4 ” Bin2 . b in x ” ,
5 ” Bin3 . b i n ” ) ,
6 s o u r c e d o s e r a t e = l i s t (
7 c ( 0 . 1 0 , 0 . 0 0 1 ) ,
8 c ( 0 . 1 3 , 0 . 0 0 2 ) ,
9 c ( 0 . 1 2 , 0 . 0 0 1 ) ) ,

10 XLS f i l e = ” ˜ / B a y e s i a n / S i t e / Sample . x l s ” ,
11 s h e e t = ” Disc−Grain− l i s t ” ,
12 a l i q u o t r a n g e = c ( 1 : 3 0 ) ,
13 s i g n a l . i n t e g r a l = c ( 5 : 1 0 ) ,
14 s i g n a l . i n t e g r a l . Tx = c ( 5 : 1 0 ) ,
15 background . i n t e g r a l = c ( 4 0 : 6 0 ) ,
16 background . i n t e g r a l . Tx = c ( 4 0 : 6 0 ) ,
17 s igmab = 0 ,
18 s i g 0 = 0 . 0 2 5 ,
19 d i s t r i b u t i o n = ” normal ” ,
20 n .MCMC = 100000 ,
21 f i t . method = ”EXP” ,
22 f i t . f o r c e t h r o u g h o r i g i n = TRUE,
23 f i t . i n c l u d i n g R e c y c l i n g P o i n t s = TRUE,
24 method c o n t r o l = l i s t (
25 n . c h a i n s = 3 ) ,
26 p l o t = TRUE,
27 o u t p u t . p l o t = TRUE,
28 p l o t r e d u c e d = TRUE,
29 v e r b o s e = TRUE
30 )

The code line numbers are similar to the one of the code
snippets before as there are extracted from the combined call.
The example function call appears rather complex and the
number of arguments might be confusing, but most of them
are preset and can be modified on request.

3.2. Graphical and terminal output
The (reduced) graphical feedback of the function is shown

in Fig. 3, 4 and 5 providing useful information regarding the
convergence process (Fig. 3) of the Bayesian analysis (three
Markov chains are created by the code): convergence is
observed if the slope of the trend of the red, green and black
lines is almost zero, i.e., the posterior distributions (here
three chains) had converged, the individual doses (Fig. 4),
the dose response curve and the conventional De with the D

marked within (Fig. 5).
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Figure 3. Exemplary plot output of the function analyse baSAR(). The lefthand figures show three Markov chains, each one being a sample
of the posterior distribution of D (top) and σD (bottom). The righthand figures are estimates of the posterior density functions for these two
variables.

The corresponding R terminal output may look like the
example given below.4

Listing 2. Exemplary R terminal output
1 [ a n a l y s e baSAR ( ) ] −−−− RESULTS −−−−
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 Used d i s t r i b u t i o n : normal
4 Number o f a l i q u o t s used : 128 / 128
5 C o n s i d e r e d f i t t i n g method : EXP
6 Number MCMC i t e r a t i o n s : 100000
7 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 mean sd HPD
9 >> C e n t r a l dose : 6 1 . 24 2 . 8 2 [ 5 8 . 4 6 ; 6 3 . 9 5 ] ∗∗

10 [ 5 5 . 8 1 ; 6 6 . 9 6 ] ∗∗∗
11 >> s igma D: 2 3 . 9 2 . 3 9 [ 2 1 . 5 6 ; 2 6 . 2 1 ] ∗∗
12 [ 1 9 . 5 2 ; 2 9 . 0 6 ] ∗∗∗
13 >> F i n a l c e n t r a l De : 61 . 24 2 . 8 2 − −
14 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15 ( s y s t e m a t i c e r r o r c o n t r i b u t i o n
16 t o f i n a l De : 6 .28741 e−06 %)
17 ∗∗ 68 % l e v e l | ∗∗∗ 95 % l e v e l

The first four lines return the applied parameters used by
the baSAR-model. The following three lines report on the
estimated D and σD and the final D including the system-
atic uncertainty provided via source doserate. For D and
σD the mean, the standard deviation, as well as the highest
posterior densities (HPD) at their 68 % and 95 % confidence
levels are provided. For an interpretation of the numerical
output, the reader is referred to Combès et al. (2015).

The output of the function can now be piped again to
the function but with modified parameters, e.g., the distri-

4The output has been modified for a correct typesetting and the appear-
ance in the R terminal may be different.

bution is set to ’cauchy’ instead of ’normal’. In this case
the previously produced object results is now set as input
(object) for the new function run.

Listing 3. Use previous output as input
1 r e s u l t s new <− a n a l y s e baSAR (
2 o b j e c t = r e s u l t s ,
3 d i s t r i b u t i o n = ’ cauchy ’ )

Finally the obtained D is combined and plotted along with
the De values in an abanico plot (Dietze et al., 2016) in Fig. 5.

3.3. Additional remarks
3.3.1 Selecting records

The function is written to deal with data measured using
the SAR protocol only, i.e., the function is searching for
OSL/IRSL curves following the pattern proposed by Murray
& Wintle (2000). Any additional curve / measurement steps
not belonging to this original protocol are not expected and
need to be excluded from the input data set. Unfortunately
it is not possible to account for all potential types of minor
protocol modifications commonly applied in a particular lab-
oratory. Therefore, if a BIN-file is provided, the function
analyse baSAR() respects the record selection made pre-
viously. This selection was made either with the software
Analyst (Duller, 2015) or the base R function subset(). If
the package ’Luminescence’ is attached (the normal case if
the analyse baSAR() function is to be used) the function
subset can be used in combination with objects produced
by the function read BIN2R(). In the example below only
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OSL curves are selected from the input data set.

Listing 4. Reduce BIN-file record to OSL curves
1 BIN f i l e s e l e c t i o n <− s u b s e t (
2 x = BIN f i l e ,
3 s u b s e t = LTYPE == ’OSL ’ )

The available list of selection criteria is defined by the
corresponding file version of the BIN-file itself5. See the
supplement for further examples of subsetting.

3.3.2 Additional parameters

Typing ?analyse baSAR in the R terminal reveals that the
function analyse baSAR() has an argument represented by
three dots (...). This placeholder allows additional argu-
ments to be passed to lower-level functions. These arguments
are not listed as explicit function arguments and not neces-
sary to run the function (usually because they have a mean-
ingful default value). For example: an argument skip is
passed to the function read excel::readxl() and tells it
to ignore the specified number of rows in the ExcelT M while
importing the data. Please see the manual of the function for
further information (?analyse baSAR).

5It equals the list of columns in the software Analyst

3.3.3 User-defined model

In their paper, Combès et al. (2015) had chosen a Cauchy
distribution, where the mode is defined by D, and even
though the function analyse baSAR() allows normal and
log-normal distributions as well, the user has the possibil-
ity to define their own model; in such cases, the model has
to be passed to the function as a simple string of characters
following the example below:

my_model <- "model {

central_D ~ dunif(lower_centralD,upper_centralD)

precision_D ~ dt(0, pow(0.16*central_D, -2), 1)T(0, )

sigma_D <- 1/sqrt(precision_D)

for (i in 1:Nb_aliquots) {

#Priors

a[i] ~ dnorm(6.5, 1/(9.2^2) ) T(0, )

b[i] ~ dnorm(50, 1/(1000^2) ) T(0, )

c[i] ~ dnorm(1.002, 1/(0.9^2) ) T(0, )

g[i] ~ dnorm(0.5, 1/(2.5^2) ) I(-a[i], )

sigma_f[i] ~ dexp (20)

#Cauchy distribution

D[i] ~ dt ( central_D , precision_D, 1)

#Likelihood

S_y[1,i] <- 1/(sLum[1,i]^2 + sigma_f[i]^2)

Lum[1,i] ~ dnorm ( Q[1,i] , S_y[1,i])

Q[1,i] <-

0 50 100 150

Individual Doses | ALQ: 1:15

Dose [Gy]

A
liq

u
o
t 
in

d
e
x

1
3

5
7

9
1
1

1
3

1
5

68 %

95 %

0 50 100 150

Individual Doses | ALQ: 16:30

Dose [Gy]

A
liq

u
o
t 
in

d
e
x

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

68 %

95 %

0 50 100 150 200

Individual Doses | ALQ: 31:45

Dose [Gy]

A
liq

u
o
t 
in

d
e
x

3
1

3
3

3
5

3
7

3
9

4
1

4
3

4
5

68 %

95 %

0 50 100 150

Individual Doses | ALQ: 46:60

Dose [Gy]

A
liq

u
o
t 
in

d
e
x

4
6

4
8

5
0

5
2

5
4

5
6

5
8

6
0

68 %

95 %

Figure 4. Boxplots of individual doses obtained during the bayesian calculation. Each box represents 50 % (interquartile range, IQR) of the
data, the whiskers extend to 1.5 times this range. The HPD at its 68 % and 95 % level is indicated by the dashed lines (green and red). The
plots may help to identify extreme values that might be worth a 2nd look. Box colours indicate distances of the IQR of the aliquots from the
HPD. Chosen colour code: IQR outside of the HPD - 68 %: orange, IQR outside of the HPD - 95 %: red. All other boxes are coloured white.
The aliquot index is indicated on the y-axis.
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Figure 5. Dose response curves obtained using the baSAR-model (left plot) and dose distribution plot (right plot, here abanico plot; (Dietze
et al., 2016)). Left plot: the individual dose response curves are plotted with the Lx/Tx values (measured dose points) used as input for the
baSAR-model. For graphical reasons the maximum number of curves is limited to 1000 (randomly chosen). The plot allows to evaluate the
general succession of the analysis. The right plot presents the De (not individual dose!) distribution. These De values are calculated during
the preprocessing and can be considered as the ’conventional’ approach of the data analysis. By contrast, the HPDs and the D (central dose)
are indicated within the plot (dashed lines).

GC_Origin * g[i] + LinGC * (c[i] * D[i] ) +

ExpoGC * (a[i] * (1 - exp (-D[i] /b[i])))

for (m in 2:Limited_cycles[i]) {

S_y[m,i] <- 1/(sLum[m,i]^2 + sigma_f[i]^2)

Lum[m,i] ~ dnorm( Q[m,i] , S_y[m,i] )

Q[m,i] <-

GC_Origin * g[i] + LinGC*(c[i]*Dose[m,i]) +

ExpoGC*(a[i] *(1 - exp(-Dose[m,i]/b[i])))

}

}

}"

For example, changing the numerical values for the first
prior requires a modification of the JAGS code itself, i.e. the
lines:

#Priors

a[i] ~ dnorm(6.5, 1/(9.2^2) ) T(0, )

might become

#Priors

a[i] ~ dnorm(10, 1/(100^2) ) T(0, )

However, it is worth mentioning that for any change of
the priors or underlying assumption of the model a rigour
scientific justification is indispensable.

Run a user-defined model is simply done by adding in the
list parameters the following line:

Listing 5. Run a user-defined model
1 r e s u l t s <− a n a l y s e baSAR (
2 . . . ,
3 baSAR model = my model ,
4 . . .
5 )

Please note that in cases where a new or a modified model
is provided, the previously set of variables need to be re-
spected, e.g., the variable precision D (cf. model exam-
ple above) must not be renamed, otherwise the function will
crash.

4. Conclusions
An implementation and enhancement of the central dose

model (baSAR) proposed by Combès et al. (2015) for the
programming language R and the R package ’Lumines-
cence’ were presented along with examples. The baSAR-
model can applied on single grain and multi grain aliquots
measured with the SAR (Murray & Wintle, 2000) protocol.
For the Bayesian modelling the software JAGS (Plummer,
2003) and the R package ’rjags’ (Plummer et al., 2016) as
interface is used.

This contribution did not present or discuss the under-
lying statistical assumptions, for this the user is referred to
Combès et al. (2015). Finally it should be stressed that the
availability of an easy to use software solution does not free
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the user from carefully checking its own data and verify
underlying assumptions.

Nota bene: For easy copy & paste code snippets and run-
ning examples the reader is referred to the supplement.
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