
www.ancienttl.org · ISSN: 2693-0935

Burow, C., Kreutzer, S., Dietze, M., Fuchs, M., Fischer, M., Schmidt, C. and Brückner, H., 2016.
RLumShiny - A graphical user interface for the R Package ’Luminescence’. Ancient TL 34(2): 22-32.
https://doi.org/10.26034/la.atl.2016.505

This article is published under a Creative Commons Attribution 4.0 International (CC BY):
https://creativecommons.org/licenses/by/4.0

© The Author(s), 2016

https://www.ancienttl.org/
https://doi.org/10.26034/la.atl.2016.505
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Burow et al., Ancient TL, Vol. 34, No. 2, 2016

RLumShiny -
A graphical user interface for the R Package ’Luminescence’

Christoph Burow1∗, Sebastian Kreutzer2, Michael Dietze3, Margret C. Fuchs4,
Manfred Fischer5, Christoph Schmidt5, Helmut Brückner1

1 Institute of Geography, University of Cologne, 50923 Cologne, Germany
2 IRAMAT-CRP2A, Université Bordeaux Montaigne, Maison de l’Archéologie,

Esplanade des Antilles, 33607 Pessac Cedex, France
3 Section 5.1 Geomorphology, GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany

4 Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Freiberg, Germany
5 Geographical Institute, Geomorphology, University of Bayreuth, 95440 Bayreuth, Germany

∗Corresponding Author: christoph.burow@uni-koeln.de

Received: November 28, 2016; in final form: December 5, 2016

Abstract
Since the release of the R package
’Luminescence’ in 2012 the functionality
of the package has been greatly enhanced by
implementing further functions for measure-
ment data processing, statistical analysis and
graphical output. Along with the accompa-
nying increase in complexity of the package,
working with the command-line interface of R
can be tedious, especially for users without pre-
vious experience in programming languages.
Here, we present a collection of interactive
web applications that provide a user-friendly
graphical user interface for the ’Luminescence’
package. These applications can be accessed
over the internet or used on a local computer
using the R package ’RLumShiny’. A short
installation and usage guide is accompanied by
the presentation of two exemplary applications.

Keywords: R, Software, GUI, Luminescence
dating, Abanico Plot, Cosmic Dose Rate

1. Introduction
After its introduction in 1996 by Ihaka & Gentleman

(1996) the programming language R (R Core Team, 2016)
experienced a notable rise in popularity in the mid-2000s

(Tippmann, 2015). This may owe to R being intuitive
and easy to learn, open source, and available for all major
computer platforms. A further major advantage of R is
its easy extensibility by so-called packages, which are
collections of pre-programmed routines and commands for
all kinds of specialised purposes. To date, there are more
than 9,6001 packages available through the Comprehensive
R Archive Network (CRAN)2, contributed by users from
various scientific fields. For the purpose of analysing
luminescence data, Kreutzer et al. (2012) introduced the R
package ’Luminescence’. The package provides a collection
of functions to process luminescence data and includes,
amongst others, routines for import and export of raw
measurement files, statistical analysis of luminescence
curves and spectra as well as plotting equivalent dose and/or
age distributions. Throughout the years, the functionality of
the package continuously increased, especially thanks to the
helpful suggestions and comments by the users. As the field
of applications with the latest release (version 0.6.4) is now
larger than ever, the growth in functionality comes at the
cost of increasing complexity. The practical guide by Dietze
et al. (2013) or the worked example of Fuchs et al. (2015)
aim at maintaining the usability of the package and giving
a helping hand for users new to R and the ’Luminescence’
package. In addition to tutorials dedicated to the use of
R for luminescence data analysis available on the official

1https://mran.microsoft.com/, accessed: 2016-11-18.
2https://cran.r-project.org/, accessed: 2016-11-18.

22

https://mran.microsoft.com/
https://cran.r-project.org/

Burow et al., Ancient TL, Vol. 34, No. 2, 2016

website3 of the R package ’Luminesecence’ there is also a
wide variety of excellent tutorials and books about R itself
(e.g., Ligges, 2008; Adler, 2012; Crawley, 2012; Wickham,
2014).

While R is a comparatively easy-to-learn programming
language, there is still a steep learning curve until a user
is able to routinely achieve the desired results. In-depth
knowledge of R fundamentals is not required when
working with the ’Luminescence’ package, but being
familiar with the most important data structures in R is
a must. In the simplest case, for a specific task, using
the package only involves a single short function call,
e.g., Luminescence::plot AbanicoPlot(data =
de.data) to produce an abanico plot (Dietze et al., 2016)
of equivalent dose estimates. However, users may want to
adjust the plot according to their requirements. While other
software products such as Origin® or SigmaPlot® allow the
user to comfortably click on each element of a plot to change
its appearance, this is not possible in R. In R a plot cannot
be changed after it has been drawn, and the user is required
to re-run the function call with additional arguments that
control the appearance of specific plot elements. For the
Luminescence::plot AbanicoPlot() function
there are currently 33 such arguments, plus additional base
R arguments that can be used to design the plot to ones
desire. For more elaborate plots the function call in the R
command-line rapidly increases in complexity. Users new to
R may feel quickly overwhelmed and may hence not be able
to exploit the full potential of the R command-line. But even
experienced users may find it tedious to iteratively run the
function until a satisfying results is produced. Considering
that plotting data is also at least partly subject to personal
aesthetic tastes in accordance with the information it is
supposed to convey, iterating through all the possible options
in the R command-line can be a time-consuming task. In
Human-Computer Interaction an alternative approach to the
command-line interface (CLI) is the graphical user interface
(GUI), which allows direct, interactive manipulation and
interaction with the underlying software. For users with
little or no experience with command-lines a GUI offers
intuitive access that counteracts the perceived steep learning
curve of a CLI (Unwin & Hofmann, 1999).
Here, we present a GUI for the R package ’Luminescence’
in the form of interactive web applications. These appli-
cations can be accessed online so that a user is not even
required to have a local installation of R. The so-called shiny
applications provide access to most of the plotting functions
of the R package ’Luminescence’ as well as to the functions
for calculating the cosmic dose rate and for transforming
CW-OSL curves (Table 1). We further introduce the R
package ’RLumShiny’ (Burow, 2016) that bundles all
applications, is freely available through the CRAN and
GitHub4, and which can be installed and used in any local
R environment. The general concept and basic layout of

3http://www.r-luminescence.de/, accessed: 2016-11-20.
4https://github.com/, accessed: 2016-11-20.

the applications are presented first. A short installation
and usage guide of the R package ’RLumShiny’ is then
followed by a presentation of two applications for creating
abanico plots and calculating the cosmic dose rate. For the
latter, we also provide details on the underlying function
Luminescence::calc CosmicDoseRate() itself.
Throughout the manuscript, R function calls and R related
code listings are typed in monospaced letters. Functions
of R packages other than ’RLumShiny’ are given in the style
of package::function(). R packages are given in
single quotation marks and software programs are in italics.

2. Shiny applications
Even though R lacks native support for GUI functions,

its capabilities of linking it to other programming languages
allows to utilise external frameworks to build graphical user
interfaces (Valero-Mora & Ledesma, 2012). Throughout the
years there have been many attempts to provide the means
for easier access to R. A non-exhaustive list of notable R
packages linking to other languages or frameworks (given in
parentheses) for building GUIs includes:

• ’rrgobi’ (GGobi) (Temple Lang & Swayne, 2001; Tem-
ple Lang et al., 2016)

• ’gWidgets’ (Tcl/Tk, GTK+, Java or Qt) (Verzani, 2014)

• ’cranvas’ (Qt) (Xie, 2013)

• ’RGtk’/’RGtk2’ (GTK+) (Robison-Cox, 2003;
Lawrence & Temple Lang, 2010)

• iPlots (Java) (Urbanek & Theus, 2003; Urbanek &
Wichtrey, 2013)

• ’tcltk’ (Tcl/Tk) (Dalgaard, 2001a,b)

As an example, the ’tctlk’ package implements an inter-
face to the Tcl/Tk GUI toolkit and allows the user to build
a Tk GUI with plain R code. The most prominent project
making full use of the Tcl/Tk framework is the R Comman-
der5 (Fox, 2005, 2016), which provides a GUI to an exhaus-
tive collection of statistical functions and is commonly used
in teaching statistics (e.g., Konrath et al., 2013; Wagaman,
2013; Westbrooke & Rohan, 2014).

One of the more recent attempts to provide a GUI toolkit
for R was the introduction of the ’shiny’ package (Chang
et al., 2016) by RStudio® in late 20126, which allows for
building interactive web applications straight from R. Sim-
ple R code allows automatic construction of HTML, CSS and
JavaScript based user interfaces. GUIs built using ’shiny’ are
often referred to as ’shiny applications’ due to the package’s
name. Prior knowledge in any of these (markup-)languages
is not required. The application is rendered in a web browser

5R Commander is distributed as the R package ’Rcmdr’ (Fox & Bouchet-
Valat, 2016)

6https://cran.r-project.org/src/contrib/Archive/
shiny/, accessed: 2016-11-18.

23

http://www.r-luminescence.de/
https://github.com/
https://cran.r-project.org/src/contrib/Archive/shiny/
https://cran.r-project.org/src/contrib/Archive/shiny/

Burow et al., Ancient TL, Vol. 34, No. 2, 2016

Table 1: Shiny applications available in the R package ’RLumShiny’ (v0.1.1). Each application can be started using the function
app RLum() with the corresponding keyword as input for the parameter app (e.g., app RLum(app = ’abanico’)).
* All functions are part of the ’Luminescence’ package.

Application Keyword Function(s)*
Abanico Plot ”abanico” plot AbanicoPlot()
Radial Plot ”radialplot” plot RadialPlot()
Histogram ”histogram” plot Histogram()
Kernel Density Estimate Plot ”KDE” plot KDE()
Dose Recovery Test ”doserecovery” plot DRTResults()
Cosmic Dose Rate ”cosmicdose” calc CosmicDoseRate()
CW Curve Transformation ”transformCW” CW2pHMi(), CW2pLM(), CW2pLMi(), CW2pPMi()

and keeps up a bidirectional communication to R. Any user
input on the web application is automatically registered by R,
which performs the desired action or necessary calculation
and finally returns its output back to the GUI. In essence,
rather than using the CLI the user operates R through the
many pre-built and customisable input and output elements
(widgets) for displaying plots, tables and printed output of R
objects. One of the main advantages of ’shiny’ is that the ap-
plications can be served and shared online as a web service,
either by using RStudio’s hosting service7 or by installing R
and the Shiny Server software on a (private) Linux server.
To access the applications users only need a working internet
connection and a common HTML 5 compatible browser; a
local R environment is not needed. Another advantage over
previous listed GUI frameworks is that ’shiny’ is based on
modern programming and markup languages, which allows
easy integration of existing JavaScript libraries, thus greatly
increasing the capabilities of ’shiny’ and R itself.

Shiny applications generally work in any R environment,
but we highly recommend the integrated development envi-
ronment (IDE) by RStudio (RStudio Team, 2016) when the
applications are run locally.

3. The R package ’RLumShiny’

While Duller (2015) acknowledges that the R package
’Luminescence’ is capable of ”extremely complex analysis”,
the lack of a GUI is rightfully criticised for limiting the po-
tential user group to those with at least basic knowledge in
programming. To account for the lack of a GUI and hence to
make the ’Luminescence’ package more accessible for users
with no prior knowledge of R we created a collection of shiny
applications (Burow et al., 2014). These applications provide
a GUI to selected functions of the ’Luminescence’ package,
mainly, but not exclusively, focussing on its plotting capabil-
ities (Table 1).

These shiny applications are bundled as an R pack-
age named ’RLumShiny’ (Burow, 2016), which is dis-
tributed and freely available through the CRAN. The first
version of ’RLumShiny’ was released on CRAN in March

7http://www.shinyapps.io/, accessed: 2016-11-18.

20158 and accumulated over 5,000 downloads9 since then,
even though it was never formally introduced to the sci-
entific community. While it may not seem intuitive, these
shiny applications were deliberately not included in the
’Luminescence’ package. Much like the R package ’RLum-
Model’ (Friedrich et al., 2016) for simulating luminescence
in quartz, ’RLumShiny’ uses the functions and object sys-
tem of ’Luminescence’. But the dependency is unidirec-
tional, meaning that ’Luminescence’ does not require either
of the mentioned packages in order to work. Both pack-
ages can be regarded as extensions to ’Luminescence’ pro-
viding optional and particular features. For the user bundling
the shiny applications in a separate package has the advan-
tage of less overhead when installing ’Luminescence’. As
’RLumShiny’ requires a couple of other R packages (first
and foremost ’shiny’ and all its sub-dependencies) installing
’Luminescence’ may not only take significantly longer, but
may also install packages that the user eventually does not
need in case the applications are not used. Furthermore,
’RLumShiny’ includes functions that extend the capabilities
of ’shiny’ itself (Table 2) and which should not appear in a
package dedicated to the analysis of luminescence data.

From a developer’s point of view, it is also easier to
develop and maintain a separate R package as it elimi-
nates the necessity to constantly update the code to account
for changes in ’Luminescence’. Conversely, development
of the ’Luminescence’ package is not decelerated by the
need to update the applications. Each release version of
’RLumShiny’ is built and tested against a specific version
of ’Luminescence’. In case of an update to a function in
’Luminescence’ that breaks the corresponding shiny appli-
cation in ’RLumShiny’ the user is always able to revert to an
earlier, compatible version of the ’Luminescence’ package.

Since version 0.6.0 the ’Luminescence’
package includes the homonymous function
Luminescence::app RLum(), a wrapper for the
actual app RLum() function in ’RLumShiny’. By
that, users of the ’Luminescence’ package are made

8https://cran.r-project.org/src/contrib/Archive/
RLumShiny/, accessed: 2016-11-18.

9Download statistics taken from https://cranlogs.r-pkg.
org/, accessed: 2016-11-18.

24

http://www.shinyapps.io/
https://cran.r-project.org/src/contrib/Archive/RLumShiny/
https://cran.r-project.org/src/contrib/Archive/RLumShiny/
https://cranlogs.r-pkg.org/
https://cranlogs.r-pkg.org/

Burow et al., Ancient TL, Vol. 34, No. 2, 2016

Table 2: Functions in the R package ’RLumShiny’ (v0.1.1). The main function is app RLum(), which must be used to start
any of the applications given in Table 1. All other functions are used internally and extend the functionality of the ’shiny’
package.

Function Description
app RLum() Run luminescence shiny applications.
jscolorInput() Creates a JSColor widget to be used in shiny applications.
popover() Create a bootstrap button with popover.
tooltip() Create bootstrap tooltips for any HTML element to be used in shiny applications.

aware of the existence of a GUI, even if ’RLumShiny’
is not installed. In case of the latter, running this func-
tion informs the user that ’RLumShiny’ is not installed
and provides instructions on how to do so if desired.
Once installed it is possible to start a shiny application
by either using Luminescence::app RLum() or
RLumShiny::app RLum().

The ’RLumShiny’ package is actively developed and
maintained on the web-based Git10 repository hosting ser-
vice GitHub11. The ’RLumShiny’ applications are also avail-
able as a web service hosted on a web server maintained by
the corresponding author of this article12.

3.1. Installation and usage
To install the latest stable version of ’RLumShiny’ from

CRAN, simply run the code given in Listing 1 in an R con-
sole.

Listing 1: Install the ’RLumShiny’ package from the CRAN.
i n s t a l l . p a c k a g e s (’ RLumShiny ’)

Alternatively, the user can download the latest develop-
ment version of ’RLumShiny’ from GitHub (Listing 2). This,
however, requires the ’devtools’ package, which will be in-
stalled first when executing the first two code lines of List-
ing 2.

Listing 2: Install the development version of ’RLumShiny’
through GitHub.
i f (! r e q u i r e (’ d e v t o o l s ’))

i n s t a l l . p a c k a g e s (’ d e v t o o l s ’)
d e v t o o l s : : i n s t a l l g i t h u b (’R−Lum / RLumShiny ’)

Both Listing 1 and Listing 2 will install the ’RLumShiny’
package and all its dependencies, i.e., other R packages that
are required to run the applications (amongst others, most
notably ’shiny’ and ’Luminescence’). The user only needs to
make sure to have installed the most recent version of R to
get the most recent version of the ’RLumShiny’ package (but
at least version ≥3.1.2).

To start any of the applications included in ’RLumShiny’
the user only needs to run app RLum() with the corre-
sponding keyword given in Table 1. As an example, Listing 3

10A version control system used in software development.
11https://github.com/R-Lum/RLumShiny, accessed: 2016-

11-18.
12http://shiny.r-luminescence.de, accessed: 2016-11-18.

shows how to run the shiny application for creating abanico
plots.

Listing 3: Run the shiny application for creating abanico
plots.
l i b r a r y (’ RLumShiny ’)
app RLum(app = ’ a b a n i c o ’)

Note that library(’RLumShiny’) needs to be run
first when starting a new R session, otherwise R can-
not find the app RLum() function and returns an er-
ror. app RLum() only has one named argument called
app, which accepts all keywords listed in Table 1. Ad-
ditionally, the function also accepts most arguments of the
shiny::runApp() function (see ?shiny::runApp).
Thereby it is possible to, e.g., start an application in the
so-called showcase mode13, which presents the application
along with the R files in the application’s directory in a
shared tabset.

An alternative to installing and using the ’RLumShiny’
package on a local computer is to host the applications as a
web service using the Shiny Server14 software. This enables
sharing the applications with a wider user base, whether it
be an organisation, a working group or anyone interested in
using it by making it freely accessible on the internet. Some
of the advantages include that, amongst all potential users of
the service, only one person is required to set up and main-
tain the Shiny Server. It has to be considered, however, that
setting up a Shiny Server requires a server (or web space),
which may need to be purchased or rented first, and a person
with sufficient knowledge in administrating a Linux server.
Furthermore, the open source version of Shiny Server only
has a limited amount of features compared to the Pro version
that is subject to fee. Nonetheless, the advantages of running
a freely accessible, local or access limited Shiny Server can
far outweigh these drawbacks and once set up, can provide
unlimited and platform independent access to the shiny ap-
plications (cf. Fig. 1).

Due to the complexity it is, however, not within the
scope of the article to provide a Shiny Server installa-
tion guide. The reader is referred to RStudio’s offi-

13For reference see http://shiny.rstudio.com/articles/
display-modes.html, accessed: 2016-11-18.

14https://www.rstudio.com/products/shiny/
shiny-server/, accessed: 2016-11-18.

25

https://github.com/R-Lum/RLumShiny
http://shiny.r-luminescence.de
http://shiny.rstudio.com/articles/display-modes.html
http://shiny.rstudio.com/articles/display-modes.html
https://www.rstudio.com/products/shiny/shiny-server/
https://www.rstudio.com/products/shiny/shiny-server/

Burow et al., Ancient TL, Vol. 34, No. 2, 2016

Figure 1: Example for a locally set up Shiny Server, here at the IRAMAT-CRP2A in Bordeaux. Installed are all applications
available through the package ’RLumShiny’ and additional applications freely available via GitHub or CRAN. The server is
accessible within the local network of the IRAMAT-CRP2A only.

cial administrator’s guide15 instead. In some cases it
may also be viable to use RStudio’s self-service platform
http://shinyapps.io, a hosting environment where
users can easily upload, run and share their shiny applica-
tions. The service offers different subscription plans depend-
ing on the desired number of allowed applications, service
availability and feature content.

3.2. Application layout and capabilities
Almost all shiny applications included in the

’RLumShiny’ package follow a common layout style
(Fig. 2). The exception to the rule is the application for
calculating the cosmic dose rate, which will be presented
separately in Section 3.3.2. The following layout descrip-
tions hence refer to all applications other than the one for
calculating the cosmic dose rate. A general characteristic all
shiny applications share, however, is the responsive design,
meaning that the layout adjusts dynamically while taking
into account the characteristics of the device used. Shiny
applications are thus always correctly rendered and perfectly
usable on desktop computers, mobile phones and anything
in between.

Currently, each application in the ’RLumShiny’ package

15http://docs.rstudio.com/shiny-server/, accessed:
2016-11-18.

usually consists of two separate panels: an input panel on the
left-hand side and an output panel on right-hand side. The
top of each panel contains a varying amount of tabs (depend-
ing on the app) and a context-dependent content area below.
In case of the input panel the content areas include various in-
put widgets by which the parameters of the underlying func-
tion can be manipulated. Depending on the required data
type of the manipulated function parameter these widgets in-
clude buttons, checkboxes, sliders, numeric and text input
fields and others. Each time the user interacts with these
elements the output is automatically updated, i.e., plots are
redrawn and numeric output is recalculated.

The first tab of the input panel is always the ”Data”-tab,
where the user is able to provide the input data. In some
cases the user is also able to provide a second data set, e.g., in
the application for creating abanico plots (Section 3.3.1). In-
put data, usually equivalent doses and their individual errors,
can be provided as plain text files. Additional options allow
specifying the column separator or if the first line should be
treated as column headers.

With respect to the output panel the first tab is always a
plot, followed by one or two tabs showing an interactive ta-
ble of the input data. In case of the plotting applications the
last output tab shows a dynamically generated R script that
can be copied to a text editor or RStudio and used to repro-
duce the current plot as seen in the ”Plot”-tab. We regard

26

http://shinyapps.io
http://docs.rstudio.com/shiny-server/

Burow et al., Ancient TL, Vol. 34, No. 2, 2016

a

b

f

e

c

d

Input Output

Figure 2: General layout of shiny applications in the ’RLumShiny’ package. The applications follow a common GUI layout
with two separate panels for input (left) and output (right). Both panels consist of a header with a varying amount of tabs (a, c)
and a context-depend content area (b, d). In the example shown here (app RLum(app = ’doserecovery’)) (b) shows
the ”Data” tab content where the user is allowed to provide up to two data sets as an ASCII text file. Additional check boxes
and radio buttons allow for providing the files in various style formats. Some of the input elements provide custom tooltips
with graphical or text information (e). The ”Bookmark” button (f) below the input panel allows saving the current state of the
application. The user is provided an URL, which can be used to restore the session, i.e. all previous settings and provided data
are automatically restored.

this as a valuable addition as (i) users may use this as a help
to understand all the arguments of a particular function and
are able to see how they should be used, and (ii) it provides
the means to fully reproduce the plot from the CLI or in an
existing R script.

Naturally, all applications for generating plots offer an
export section, which is accessed by the second to last tab
on the input panel (Fig. 3). There, the user is able to save
the generated plot in a vector graphics format (PDF, SVG
or EPS). Note that the plot dimensions in the exported file
usually differ from those seen in the ”Plot”-tab, as the latter
is dynamically rescaled depending on the current size of the
viewport. The height and width of the exported image can be
specified separately. Additionally, the user can download an
R script that includes the code required to reproduce the plot
from the CLI.

3.3. Example applications
In the current version of ’RLumShiny’ (v0.1.1) more

than half of all included applications are exclusively there
for creating graphical output. The remaining applications

are to calculate the cosmic dose rate and to transform
continuous-wave OSL curves to a pseudo hyperbolic, lin-
early or parabolic modulated curve (Table 1). In the follow-
ing, specific capabilities of the ’RLumShiny’ package are ex-
emplified by the applications for creating an abanico plot and
for calculating the cosmic dose rate.

3.3.1 Abanico Plot

The abanico plot was introduced by Dietze et al. (2016),
a novel plot type for showing chronometric data with
individual standard errors. In essence, it is a combi-
nation of a radial plot (Galbraith, 1988) and a kernel
density estimate (KDE) plot (cf. Galbraith & Roberts,
2012), which can be created using the R function
Luminescence::plot AbanicoPlot(). To produce
a ready-to-use plot the user only needs to provide some input
data. Yet, Luminescence::plot AbanicoPlot()
offers 33 arguments and an uncounted number of base R ar-
guments that can be used to style the plot to ones desire. As
plots generated in R cannot be changed after they have been
drawn the user is required to repeatedly run the function call

27

Burow et al., Ancient TL, Vol. 34, No. 2, 2016

a

c

b

Figure 3: File export options available for the histogram application (app RLum(app = ’histogram’)). All plotting
applications of the R package ’RLumShiny’ include an export tab in the input panel, which (a) offers the possibility to save
the generated plot as a vector graphics file (file types: PDF, SVG, EPS). Additionally, (b) the user can download an R script
file that includes the code shown in in the output panel (c), which can be used to reproduce the generated plot in any other R
environment that has the ’Luminescence’ package installed. Alternatively, the user can also just copy and paste the code in (c)
and execute it in an R console.

a

b

c

d

e

Figure 4: A selection of input options available in the shiny application to generate abanico plots. a) Mutually exclusive
options such as the summary position are often manipulated using a drop down menu. b) Binary options like showing or hiding
numerical information on the plot can be controlled by checkboxes. c) Plot annotations and axis labels can be changed by
text input fields. d) Function arguments requiring a single numeric value or a range of values can be controlled by regular
or double-ended range sliders. e) ’RLumShiny’ includes the JavaScript library JSColor (Odvarko, 2014) along with a custom
’shiny’ binding. In this example, if the user chooses ”Custom” for the datapoint colour a text input field and a colour table
appears, from which a colour can be picked. Alternatively, a hexadecimal RGB value can be typed in directly.

28

Burow et al., Ancient TL, Vol. 34, No. 2, 2016

while iteratively changing the input parameters. Even for ex-
perienced users this may be a tedious and time-consuming
task.

Compared to all other shiny applications in ’RLumShiny’
the GUI for generating abanico plots offers the highest num-
ber of input widgets (Fig. 4). Generally, a numeric range
(e.g., axis limits) is usually controlled with a regular or
double-ended range slider, binary options (e.g., showing or
hiding the summary) with checkboxes and mutually exclu-
sive options (e.g., line type) with radio buttons or drop down
menus. Text fields are mostly used to manipulate plot anno-
tations and axis labels.

The jscolorInput() function in ’RLumShiny’ ex-
tends the ’shiny’ interface by including the web colour picker
JSColor16 (Odvarko, 2014). When the user chooses ”Cus-
tom” as input in one of the colour drop down menus (e.g., in
the ”Datapoint”-tab) a new text input field appears. There,
the user is able to enter a hexadecimal RGB value or to pick
a colour from a small colour table that appears when the user
clicks in the input field.

3.3.2 Cosmic dose rate

The shiny application for calculating the cosmic dose
rate is chosen as an example (i) to take the oppor-
tunity to provide details on the underlying function
Luminescence::calc CosmicDoseRate(), (ii) as

16http://jscolor.com/, accessed: 2016-11-18.

its layout differs from all other applications in ’RLumShiny’,
and (iii) as it includes a unique feature.

Despite its universal use, the equation to calculate the
cosmic dose rate provided by Prescott & Hutton (1994) is
falsely stated to be valid from the surface to 104 hg cm-2

(1 hg cm-2 = 100 g cm-2) of standard rock17. The origi-
nal expression by Barbouti & Rastin (1983) only considers
the muon flux (i.e., the hard-component of the cosmic flux)
and is, by their own account, only valid for depths between
10 hg cm-2 and 104 hg cm-2. Thus, for near-surface sam-
ples (i.e., for depths <167 g cm-2) the equation of Prescott
& Hutton (1994) underestimates the total cosmic dose rate as
it neglects the influence of the soft-component of the cosmic
flux. For samples at zero depth and at sea-level the underesti-
mation can be as large as ~0.1 Gy ka-1. In a previous article,
Prescott & Hutton (1988) give another approximation of the
equations in Barbouti & Rastin (1983) in the form of

Ḋc = 0.21 e(−0.07 x + 5×10−4 x2) (1)

where Ḋc is the cosmic dose rate in Gy ka-1 and x
is the depth in hg cm-2. This expression is valid for
depths between 150 g cm-2 and 5000 g cm-2. For shal-
lower depths (<150 g cm-2) the cosmic dose rate must
be read from Figure 1 in Prescott & Hutton (1988). As
a result, Luminescence::calc CosmicDoseRate()
employs Equation 2 of Prescott & Hutton (1994) only for

17To obtain the depth in units of centimeters values given in g cm-2 must
be divided by the material’s density (in g cm-3). Example: In a sediment of
density 1.8 g cm-3, 167 g cm-2 equates to a sample depth of ~93 cm.

Figure 5: Shiny application for calculating the cosmic dose rate using the R function
Luminescence::calc CosmicDose(). In contrast to most other applications in ’RLumShiny’ this application
only provides numerical output (bottom right). A unique feature of this application is the use of Google Maps™ (using the
’googleVis’ package (Gesmann & de Castillo, 2011)), which serves as a visual control to whether the provided longitude and
latitude are correct.

29

http://jscolor.com/

Burow et al., Ancient TL, Vol. 34, No. 2, 2016

depths >167 g cm-2, i.e., only for the hard-component
of the cosmic flux. Cosmic dose rate values for depths
<167 g cm-2 were carefully reproduced from Figure 1 in
Prescott & Hutton (1988) and fitted with a 6-degree polyno-
mial curve. When the user provides a sample depth smaller
than 167 g cm-2 the cosmic dose rate is thus estimated from
the fitted curve instead.

With regards to the shiny application for
Luminescence::calc CosmicDoseRate() its
comparatively small number of arguments (n = 9) favoured
a ”flatter” design, i.e., making all options available in one
panel without separate tabs (Fig. 5). This resulted in a
horizontally aligned interface, with the user input at the
top and the output at the bottom. A unique feature of this
application is the implementation of a Google Map by
using the ’googleVis’ package (Gesmann & de Castillo,
2011). As the latitude and longitude are compulsory for
calculating the cosmic dose rate, the provided values are
also used for finding the place on the Google Map. This
serves as a visual control as to whether the provided values
are correct. Finally, the application enhances the underlying
Luminescence::calc CosmicDoseRate() by
allowing the user to provide the longitude and latitude in
different coordinate formats, which are internally converted
to decimal degrees as required by the function.

4. Discussion
This contribution introduced so-called shiny applications,

which provide a graphical user interface to a selected number
of functions of the R package ’Luminescence’. Built using
the ’shiny’ framework, the user is presented a scalable and in-
tuitive GUI allowing for direct manipulation and interaction
with the underlying R functions.

While we are confident that these applications lower
the entry threshold for users new to R or the R package
’Luminescence’, installing and using the ’RLumShiny’ pack-
age in a local R environment is still not (and probably never
will be) as straightforward as standalone software such as
Analyst (Duller, 2015) or RadialPlotter (Vermeesch, 2009).
The user is still required to install R, an IDE (e.g., RStudio)
and finally all required R packages, notably ’Luminescence’
and ’RLumShiny’. Usage of ’RLumShiny’ is kept as easy as
possible, however, as the user only needs to remember one
single function (app RLum()) and the keywords given in
Table 1 to start a particular application.

Ideally, shiny applications are shared as web applications
served by a dedicated server running R and Shiny Server.
While this requires potentially investing in a corresponding
infrastructure (e.g., renting web space) and a person experi-
enced in setting up and maintaining a Linux server, the afore-
mentioned drawbacks are largely eliminated. Once a Shiny
Server is up and running, all the users need to do is to en-
ter a specific URL in a HTML 5 compatible web browser; a
local R environment is no longer needed. Furthermore, ac-
cess permissions to the shiny applications can be controlled
by the server administrator.

A general limitation to providing a GUI to R in
general and the ’Luminescence’ package in particu-
lar is that the user is always limited to the op-
tions provided by the GUI. For example, the func-
tion Luminescence::plot AbanicoPlot() accepts
a theoretically infinite number of input data, but is restricted
to two data sets in the shiny application; otherwise, the GUI
would become too convoluted. The user is thus required to
revert to the CLI when the GUI does not provide the neces-
sary means to fulfil the desired task. In essence, a CLI will
always be more powerful than a GUI.

A specific limitation of the ’RLumShiny’ package is that
the currently included applications cover only a fairly re-
stricted amount of functions of the ’Luminescence’ pack-
age. Most applications provide a GUI to plotting func-
tions and to a few functions dedicated to very specific
problems (such as calculating the cosmic dose rate or
transforming CW-OSL curves). There is no applica-
tion dedicated to the analysis of raw luminescence data
(e.g., Luminescence::analyse SAR.CWOSL()) yet,
which, without doubt, would also profit from a GUI. It is the
aim of the authors to develop more shiny applications in the
future. We may also invite other R users to contribute and
further improve the package.

In summary, we believe the presented shiny applications,
bundled in the R package ’RLumShiny’, are a welcome con-
tribution to the luminescence community and a useful addi-
tion to the R package ’Luminescence’. It is designed to be
used by both users with, and without, prior knowledge of R.

5. Conclusion
The authors of the R package ’Luminescence’ (Kreutzer

et al., 2016) are fully aware that, despite its capabilities for
complex and non-standard analysis of luminescence data,
working with the command-line interface of R can be tedious
at best and overwhelming at worst. Even though much work
is put into simplifying the usage of the package to continu-
ously lower the entry threshold, at least basic knowledge of
R will always be required. Thus, the potential user base of
the package cannot be exhausted, at least as long as the CLI
is the only means of utilising the ’Luminescence’ package.

As an alternative to the CLI, a graphical user interface al-
lows for direct, interactive manipulation and interaction with
the underlying software. For users with little or no experi-
ence with command-lines a GUI offers intuitive access that
counteracts the perceived steep learning curve of a CLI (Un-
win & Hofmann, 1999). To account for the demand of a GUI
for the R package ’Luminescence’ we presented a series of
so-called shiny applications. These applications are built us-
ing the ’shiny’ framework (Chang et al., 2016), which allows
building a HTML, CSS and JavaScript based GUI straight
from R. These applications are bundled in the R package
’RLumShiny’ (Burow, 2016), which is freely available ei-
ther through the CRAN (https://CRAN.R-project.
org/package=RLumShiny) or from GitHub (https:
//github.com/R-Lum/RLumShiny).

30

https://CRAN.R-project.org/package=RLumShiny
https://CRAN.R-project.org/package=RLumShiny
https://github.com/R-Lum/RLumShiny
https://github.com/R-Lum/RLumShiny

Burow et al., Ancient TL, Vol. 34, No. 2, 2016

The shiny applications included in ’RLumShiny’ can be
(i) used on a local computer with a working R environ-
ment, or (ii) shared as web applications with a wider au-
dience (e.g., an organisation or working group) by setting
up a Shiny Server. A Shiny Server run by the authors of
this article can be freely accessed under http://shiny.
r-luminescence.de. Note, however, that the perfor-
mance of this server is fairly limited and not indicative for
the general performance of shiny applications.

The current version of ’RLumShiny’ (v0.1.1) includes a
total of seven applications providing a GUI to ten functions
of the ’Luminescence’ package. Hence, there are many more
functions that may greatly benefit from a GUI, and it is the
aim of the authors to provide more shiny applications in the
future. Finally, herewith we invite everyone to contribute to
this package. ’RLumShiny’ and the included JavaScript li-
brary JSColor (Odvarko, 2014) are licensed under the GNU
General Public License version 3 (GPL-3). Code derived
from the ’shinysky’ package (AnalytixWare, 2014) is cov-
ered by the MIT licence.

Acknowledgments
We are thankful to the R Core Team for providing the

R programming environment (R Core Team 2016) and the
CRAN mirrors for open access to R packages. Coopera-
tion and personal exchange between the package develop-
ers is gratefully funded by the DFG (SCHM3051/3-1) in the
framework of the program ’Scientific Networks’. The work
of SK is financed by a programme supported by the ANR
(n°ANR-10-LABX-52).

References
Adler, J. R in a Nutshell. Oreilly & Associates Incorporated, 2nd

edition, 2012.

AnalytixWare. shinysky: A set of Shiny UI components/widgets.,
2014. URL https://github.com/AnalytixWare/
ShinySky. R package version 0.1.2.

Barbouti, A.I. and Rastin, B.C. A study of the absolute intensity of
muons at sea level and under various thicknesses of absorber.
Journal of Physics G: Nuclear and Particle Physics, 9: 1577–
1595, 1983.

Burow, C. RLumShiny: ’Shiny’ Applications for the R Package
’Luminescence’, 2016. URL https://CRAN.R-project.
org/package=RLumShiny. R package version 0.1.1.

Burow, C., Kreutzer, S., Dietze, M., Fuchs, M.C., Fis-
cher, M., Schmidt, C., and Brückner, H. Shiny R.Lum
- Interactive web applications for the R packages
’Luminescence’ and ’ESR’. In German Luminescence-
and ESR-Meeting 2014, Gießen., 2014. URL http:
//www.r-luminescence.de/grafik/poster_
screenshots/2014_Poster_LED_Giessen_g.jpg.
Poster presentation.

Chang, W., Cheng, J., Allaire, JJ., Xie, Y., and McPherson, J.
shiny: Web Application Framework for R, 2016. URL https:
//CRAN.R-project.org/package=shiny. R package
version 0.13.2.

Crawley, M.J. The R Book. Wiley, 2nd edition, 2012.

Dalgaard, P. A Primer on the R-Tcl/Tk Package. R News, 1(3):
27–31, 2001a.

Dalgaard, P. The R-Tcl/Tk interface. In Hornik, K. and Leisch, F.
(eds.), Proceedings of the 2nd International Workshop on Dis-
tributed Statistical Computing, 2001b.

Dietze, M., Kreutzer, S., Fuchs, M.C., Burow, C., Fischer, M., and
Schmidt, C. A practical guide to the R package Luminescence.
Ancient TL, 31: 11–18, 2013.

Dietze, M., Kreutzer, S., Burow, C., Fuchs, M.C., Fischer, M., and
Schmidt, C. The abanico plot: visualising chronometric data
with individual errors. Quaternary Geochronology, 31: 12–18,
2016.

Duller, G.A.T. The Analyst software package for luminescence
data: overview and recent improvements. Ancient TL, 33(1):
35–42, 2015.

Fox, J. The R Commander: A Basic-Statistics Graphical User In-
terface to R. Journal of Statistical Software, 14(9): 1–42, 2005.

Fox, J. Using the R Commander: A Point-and-Click Interface for
R. Chapman and Hall/CRC, 2016.

Fox, J. and Bouchet-Valat, M. Rcmdr: R Commander, 2016. URL
https://CRAN.R-project.org/package=Rcmdr. R
package version 2.3-1.

Friedrich, J., Kreutzer, S., and Schmidt, C. Solving ordinary dif-
ferential equations to understand luminescence: RLumModel, an
advanced research tool for simulating luminescence in quartz us-
ing R. Quaternary Geochronology, 35: 88–100, 2016.

Fuchs, M.C., Kreutzer, S., Burow, C., Dietze, M., Fischer, M.,
Schmidt, C., and Fuchs, M. Data processing in luminescence
dating analysis: An exemplary workflow using the R package
’Luminescence’. Quaternary International, 362: 8–13, 2015.

Galbraith, R. and Roberts, R.G. Statistical aspects of equiva-
lent dose and error calculation and display in OSL dating: An
overview and some recommendations. Quaternary Geochronol-
ogy, 11: 1–27, 2012.

Galbraith, R.F. Graphical Display of Estimates Having Differing
Standard Errors. Technometrics, 30: 271–281, 1988.

Gesmann, M. and de Castillo, D. Using the Google Visualisation
API with R. The R Journal, 3(2): 40–44, December 2011.

Ihaka, R. and Gentleman, R. R: A Language for Data Analysis.
Journal of Computational and Graphical Statistics, 5(3): 299–
314, 1996.

Konrath, A.C., Henning, E., Walter, O.M.F.C, da Cunha Alves, C.,
and Samohyl, R.W. Applications in teaching Statistical Quality
Control with different R interfaces. In Global Engineering Edu-
cation Conference (EDUCON), 2013 IEEE, pp. 146–155, March
2013. doi: 10.1109/EduCon.2013.6530099.

31

http://shiny.r-luminescence.de
http://shiny.r-luminescence.de
https://github.com/AnalytixWare/ShinySky
https://github.com/AnalytixWare/ShinySky
https://CRAN.R-project.org/package=RLumShiny
https://CRAN.R-project.org/package=RLumShiny
http://www.r-luminescence.de/grafik/poster_screenshots/2014_Poster_LED_Giessen_g.jpg
http://www.r-luminescence.de/grafik/poster_screenshots/2014_Poster_LED_Giessen_g.jpg
http://www.r-luminescence.de/grafik/poster_screenshots/2014_Poster_LED_Giessen_g.jpg
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=Rcmdr

Burow et al., Ancient TL, Vol. 34, No. 2, 2016

Kreutzer, S., Schmidt, C., Fuchs, M.C., Dietze, M., Fischer, M., and
Fuchs, M. Introducing an R package for luminescence dating
analysis. Ancient TL, 30: 1–8, 2012.

Kreutzer, S., Dietze, M., Burow, C., Fuchs, M.C., Schmidt,
C., Fischer, M., Friedrich, J., Mercier, N., Smedley, R.K.,
Durcan, J., and King, G. Luminescence: Comprehensive
Luminescence Dating Data Analysis, 2016. URL https://
CRAN.R-project.org/package=Luminescence. R
package version 0.6.4.

Lawrence, M. and Temple Lang, D. RGtk2: A Graphical User In-
terface Toolkit for R. Journal of Statistical Software, 37(8): 1–52,
2010. URL http://www.jstatsoft.org/v37/i08/.

Ligges, U. Programmieren mit R (Statistik und ihre Anwendungen).
Springer, 3rd edition, 2008.

Odvarko, J. jscolor - JavaScript Color Picker (v1.4.4). https:
//github.com/EastDesire/jscolor, 2014. GitHub
repository.

Prescott, J.R. and Hutton, J.T. Cosmic ray and gamma ray dosime-
try for TL and ESR. Nuclear Tracks and Radiation Measure-
ments, 14: 223–227, 1988.

Prescott, J.R. and Hutton, J.T. Cosmic ray contributions to dose
rates for luminescence and ESR dating: large depths and long-
term time variations. Radiation Measurements, 23: 497–500,
1994.

R Core Team. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, 2016. URL
https://www.R-project.org/.

Robison-Cox, J. Putting RGtk to Work. In Hornik, K., Leisch,
F., and Zeileis, A. (eds.), Proceedings of the 3rd International
Workshop on Distributed Statistical Computing, 2003.

RStudio Team. RStudio: Integrated Development Environment for
R. RStudio, Inc., 2016. URL https://www.rstudio.
com/.

Temple Lang, D. and Swayne, D.F. GGobi meets R: an extensi-
ble environment for interactive dynamic data visualization. In
Hornik, K. and Leisch, F. (eds.), Proceedings of the 2nd Interna-
tional Workshop on Distributed Statistical Computing, 2001.

Temple Lang, D., Swayne, D., Wickham, H., and Lawrence, M.
rggobi: Interface Between R and ’GGobi’, 2016. URL https:
//CRAN.R-project.org/package=rggobi. R package
version 2.1.21.

Tippmann, S. Programming tools: adventures with R. Nature, 517:
109–110, 2015.

Unwin, A. and Hofmann, H. GUI and Command-line - Conflict or
Synergy? In Berk, K. and Pourahmadi, M. (eds.), Computing
Science and Statistics, Proceedings of the 31st Symposium on
the Interface, pp. 246–253, 1999.

Urbanek, S. and Theus, M. iPlots - High Interaction Graphics for
R. In Hornik, K., Leisch, F., and Zeileis, A. (eds.), Proceed-
ings of the 3rd International Workshop on Distributed Statistical
Computing, 2003.

Urbanek, S. and Wichtrey, T. iplots: iPlots - interactive graph-
ics for R, 2013. URL https://CRAN.R-project.org/
package=iplots. R package version 1.1-7.

Valero-Mora, P. and Ledesma, R. Graphical User Inter-
faces for R. Journal of Statistical Software, 49(1):
1–8, 2012. ISSN 1548-7660. doi: 10.18637/jss.v049.
i01. URL https://www.jstatsoft.org/index.php/
jss/article/view/v049i01.

Vermeesch, P. RadialPlotter: a Java application for fission
track, luminescence and other radial plots. Radiation Measure-
ments, 44: 409–410, 2009. URL http://www.ucl.ac.uk/

˜ucfbpve/radialplotter/.

Verzani, J. gWidgets: gWidgets API for building toolkit-
independent, interactive GUIs, 2014. URL https://CRAN.
R-project.org/package=gWidgets. Based on the
iwidgets code of S. Urbanek and suggestions by S. Urbanek and
P. Grosjean and M. Lawrence. R package version 0.0-54.

Wagaman, A. S. Meeting Student Needs for Multivariate Data
Analysis: A Case Study in Teaching a Multivariate Data Anal-
ysis Course with No Pre-requisites. ArXiv e-prints, 2013. URL
https://arxiv.org/pdf/1310.7141v1.

Westbrooke, I. and Rohan, M. Statistical Training in the Work-
place. In MacGillivray, H., Phillips, B., and Martin, M.A. (eds.),
Topics from Australian Conferences on Teaching Statistics, pp.
311–327, New York, 2014. Springer New York. ISBN 978-1-
4939-0603-1. doi: 10.1007/978-1-4939-0603-1 17.

Wickham, H. Advanced R. Chapman & Hall, 2014.

Xie, Y. Interactive statistical graphics based on Qt, 2013. URL
https://github.com/ggobi/cranvas. R package ver-
sion 0.8.5.

Reviewer
Shannon Mahan

Reviewer’s comment
In this paper, Burow et al. present a graphical user in-

terface (GUI) for the R package ’Luminescence’ using the
R ’shiny’ package. R ’shiny’ is a way to create GUIs for
R functions and has the capability to be hosted as web
applications. As many readers will already know, the R
’Luminescence’ package is a very powerful tool for conduct-
ing statistical treatment of luminescence data and age deter-
minations. One problem, that the authors also note, is that
the command line interface of R is not very user friendly
and can be frustrating and sometimes difficult for even users
familiar with the language. The GUI helps avoid this issue
and highlights many options in R that a user may not know
or understand. Although some prior knowledge is necessary
to run the GUI, and programs like Analyst and Radialplotter
may always be more intuitive to use, the authors acknowl-
edge this well and, in my opinion, do a good job of describ-
ing what ’RLumShiny’ is and isn’t capable of.

32

https://CRAN.R-project.org/package=Luminescence
https://CRAN.R-project.org/package=Luminescence
http://www.jstatsoft.org/v37/i08/
https://github.com/EastDesire/jscolor
https://github.com/EastDesire/jscolor
https://www.R-project.org/
https://www.rstudio.com/
https://www.rstudio.com/
https://CRAN.R-project.org/package=rggobi
https://CRAN.R-project.org/package=rggobi
https://CRAN.R-project.org/package=iplots
https://CRAN.R-project.org/package=iplots
https://www.jstatsoft.org/index.php/jss/article/view/v049i01
https://www.jstatsoft.org/index.php/jss/article/view/v049i01
http://www.ucl.ac.uk/~ucfbpve/radialplotter/
http://www.ucl.ac.uk/~ucfbpve/radialplotter/
https://CRAN.R-project.org/package=gWidgets
https://CRAN.R-project.org/package=gWidgets
https://arxiv.org/pdf/1310.7141v1
https://github.com/ggobi/cranvas

	. Introduction
	. Shiny applications
	. The R package 'RLumShiny'
	. Installation and usage
	. Application layout and capabilities
	. Example applications
	Abanico Plot
	Cosmic dose rate

	. Discussion
	. Conclusion

