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Abstract
The single-aliquot regenerative-dose (SAR)
protocol is widely used for determining equiv-
alent dose (De) in optically stimulated lumines-
cence (OSL) dating of Quaternary sediments.
The standardised growth curve (SGC) method
has been used as an efficient procedure to save
measurement time for OSL measurements. The
analysis of OSL signals and SAR data to deter-
mine De estimates and to establish SGC, how-
ever, usually involves a large amount of tedious
work and is very time consuming, especially
when a large number of aliquots or grains are
measured and analysed. Here we present trans-
parent and easy-to-use R functions to analyse
OSL data sets obtained using SAR procedures
in a batch model under the framework of the R
package ‘numOSL’. These functions allow users
to: (1) import and select data records from sin-
gle or multiple BIN (or BINX) file; (2) analyse
OSL signals and determine their standard er-
rors, based on either a Poisson distribution or
a non-Poisson (over-dispersed) distribution in
counting statistics; (3) establish dose response
curves (DRC) with a range of fitting functions,
including a general order kinetic (GOK) func-
tion; (4) calculate SAR De and associated er-
ror using either a Monte Carlo simulation or
a simple transformation method; (5) select re-
liable SAR De estimates based on a variety of
rejection criteria; (6) select well-behaved DRCs
to establish SGC using a least-square normal-
isation (LS-normalisation) procedure and cal-
culate SGC De; (7) graphically summarise and

report the results. Worked examples are pro-
vided to demonstrate the above functions using
experimentally obtained data sets. The relevant
R code templates are provided.
Keywords: OSL dating; SAR; SGC; Batch
model; R package numOSL

1. Introduction
The single-aliquot regenerative-dose (SAR) protocol

(Galbraith et al., 1999; Murray & Wintle, 2000) has been
successfully applied to determining equivalent dose (De) of
sediments from a wide variety of Quaternary environments
(Murray & Olley, 2002; Roberts et al., 2015). A standard
SAR procedure involves the measurement of natural signals
and a series of regenerative-dose signals, together with their
corresponding test-dose signals, to establish dose response
curves (DRC) using the sensitivity-corrected signals. SAR
data analysis usually involves a number of processes, includ-
ing calculating signal intensities and their associated errors,
fitting DRC, determining De estimates and their associated
errors based on natural signals and DRCs, with application
of a number of rejection criteria to select reliable De (e.g.,
Wintle & Murray, 2006; Jacobs et al., 2003, 2006).

SAR De analysis is routinely performed using the popular
and user-friendly software package Analyst (Duller, 2015).
In Analyst, De analysis can be performed interactively by
the user with real-time and visual adjustment of parameters
and manually choosing analysing methods. For single-grain
analysis, Analyst provides a simple way for automatically
analysing SAR data through the function menu “Analyse All
Grains”. The interactive process, on the other hands, may
be tedious and time-consuming if the user wants to compare
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De values selected using different rejection criteria settings.
Moreover, it is difficult to integrate and graphically report the
results of large numbers of aliquots (grains), and only a brief
statistical report of data manipulation is provided. There is
also an R package called ‘Luminescence’ (Kreutzer et al.,
2012) that provides many functions for SAR De calculation.
However, only a limited number of rejection criteria are pro-
vided to select De estimates in this package.

The standardised growth curve (SGC) procedure (Roberts
& Duller, 2004) has been proposed to save instrument time
for De determination, because this method requires solely
the measurements of the sensitivity-corrected natural signal
(Ln/Tn). This method has been successfully applied to date
sedimentary samples from different regions (Burbidge et al.,
2006; Lai, 2006; Stevens et al., 2007; Telfer et al., 2008;
Long et al., 2010; Yang et al., 2011; Shen & Mauz, 2011).
The original SGC method was recently improved by Li et al.
(2015a,b), by incorporating an additional regenerative dose
for normalising the natural signals from different aliquots
(grains), the so-called “re-normalisation” procedure. Based
on this new method, it is possible to establish common SGCs
not only for samples from the same site but also for sam-
ples from different regions. The re-normalisation procedure
was subsequently further improved using a more generalised
procedure that involves multiple iterative scaling and fitting
processes, the so-called “least-squares normalisation” (LS-
normalisation) procedure (Li et al., 2016). An increasing
number of studies have successfully applied the improved
SGC methods (e.g., Guo et al., 2016; Hu et al., 2016; Jacobs
et al., 2017; Fu et al., 2017). The process for selecting reli-
able growth curves and applying the LS-normalisation pro-
cedures to establish SGCs and calculate SGC De, however,
is non-trivial and involves a large amount of data handling.

In this study, we present easy-to-use standardised pro-
grammes for analysing, summarising, and reporting single-
grain or single-aliquot SAR data in a batch model, and select-
ing well-behaved DRCs and applying the LS-normalisation
procedure to establish SGCs and calculate De values. In
contrast to manual operation, in batch processing, jobs are
queued and processed internally one after the other without
manual intervention. It thus provides an easier and more

Figure 1. Workflows of SAR and SGC De analysis using functions
in R package ‘numOSL’.

convenient way to analyse and report large SAR data sets.
Our functions have already been released under the frame-
work of the R package ‘numOSL’ (version 2.3) (https:
//cran.r-project.org/package=numOSL) (Peng et al.,
2013). These functions are self-contained and do not depend
on any external R packages. Codes were programmed us-
ing the Fortran 90 programming language and were wrapped
by R using an interface to improve efficiency and running
speed. We presented here detailed implementation of SAR
and SGC De analysis using simple R code templates. The
report for these templates was automatically generated us-
ing the R package ‘knitr’ (Xie, 2015) and an example is
provided in the supplementary materials.

2. De analysis using the ‘numOSL’ package
SAR and SGC De analysis can be separated into three ma-

jor steps: (1) data import and selection; (2) signal analysis;
and (3) De calculation and summarising. These steps and rel-
evant functions are described graphically using the workflow
shown in Fig. 1, and are elaborated as follows.

2.1. Data import and selection
The function loadBINdata() loads standard lumines-

cence data stored in files with extension “.BIN” or “.BINX”
into R. It can load a single file or multiple files simultane-
ously. The output of this function is an object of S3 class
“loadBIN” containing loaded data records ($records) and a
summary table ($tab). The summary table showing the attri-
butions of each record can be visualized by setting argument
view=TRUE.

Once the data are loaded, the function pickBINdata()

can be used to select data records stored in the object
“loadBIN” according to various attributions of each signal
record, such as position number (Position), grain num-
ber (Grain), run number (Run), set number (Set), data
type (DType), irradiation time (IRRTime), etc. The selected
records are summarised in a table as shown in Fig. 2. The
selected records can also be further filtered by setting argu-
ment manual.select=TRUE and modifying logical values
(TRUE or FALSE) in the second column (with column name
Selected) of Fig. 2. This function re-orders the selected
records according to their Position and Grain. To improve
visibility and clarity, data records with different combination
of Position and Grain are separated by two rows of blanks
in the summary table (see Fig. 2). The output of function
pickBINdata() is an object of S3 class “pickBIN”.

2.2. Signal analysis
Data records stored in object “pickBIN” can be analysed

using the function analyseBINdata(). A number of argu-
ments are available to suit different types of data analysis.

2.2.1 Net OSL calculation

The first step of signal analysis is to select appropriate
time integrals (or channels) to calculate the net OSL
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Figure 2. Summary of the attributes of selected records using pickBINdata(), by setting the argument view=TRUE.

intensity. Two arguments nfchn and nlchn are used to
specify the numbers of channels to be used for calcu-
lating initial signal and background, respectively. Two
background subtraction methods, the “early” and “late”
background subtraction, are available via setting the ar-
gument bg=’early’ or bg=’late’, respectively. It is to
be noted that this function automatically detects the start
and end of signal based on the attributes NPoints (the
total number of channels), Delay (the “light-off” channels
before stimulation), and Off (the “light-off” channels after
stimulation) of the corresponding signal record. This is
useful when some channels have been allocated before
or/and after stimulation; a “light-off” (or delay) period is
commonly used to monitor any residual thermal signal after
preheat (e.g., Fu et al., 2012). In this case, the signal chan-
nels are calculated as (Delay+1):(Delay+nfchn),
and the background channels for the “early” and
“late” background subtraction methods are calculated
as (Delay+nfchn+1):(Delay+nfchn+nlchn) and
(NPoints-Off-nlchn+1):(NPoints-Off), respectively.

2.2.2 Signal error estimation

The counting error of luminescence signal can be estimated
using two methods. For the argument distp=’p’, the vari-
ance of photon counts is assumed to follow a Poisson dis-
tribution. In this case, the relative standard error of the net
OSL response (L) is estimated using the formula described
by Galbraith (2002):

rse(L) =

√
I f +

t2
f

t2
l

Il

I f −
t f
tl

Il
(1)

where I f is the total number of counts over the first few chan-
nels of total duration t f of the decay curve. Il is the total
number of counts over the last few channels of total dura-
tion tl . However, recent studies (e.g., Li, 2007; Adamiec
et al., 2012) suggest that the variation in photon counts are
dispersed more than would be expected from the assumed
Poisson distribution. In this case, the user can set the ar-
gument distp=’op’ to calculate the relative standard error
following the equation provided by Bluszcz et al. (2015):

rse(L) =
√
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phI f +(k2

dc− k2
ph)Ḃt f+
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f
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l
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where kph and kdc are the square root of variance to mean
ratio (Adamiec et al., 2012) for the photon and dark counts,
respectively, and Ḃ denotes the dark count rate (unit in cts/s).
It is noted that, to be able to use this method, the user need to
provide the values of kph, kdc, and Ḃ (through arguments kph,
kdc, and dcr, respectively), which should be measured in-
dependently for individual readers or measurement systems
(see Adamiec et al. 2012 for details), as argument inputs for
the function analyseBINdata(). Then the relative standard
error of sensitivity-corrected OSL (L/T ) is estimated as:

rse(
L
T
) =

√
rse2(L)+ rse2(T )+2σ2

ins (3)

where σins is the instrumental irreproducibility for each indi-
vidual OSL measurement (L or T ) that can be set using the
argument me in function analyseBINdata().
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2.2.3 Signal type selection

Apart from extracting the sensitivity-corrected signals (L/T ),
a default setting for the SAR procedure, user can also set the
argument signal.type to extract the results of “L”, or “T”.
This is useful for analysing the data from a procedure differ-
ent from SAR, such as the pre-dose MET-pIRIR procedure
for K-feldspar (Li et al., 2013, 2014), where the sensitivity-
corrected (L/T ), test dose (T ) and sensitivity-uncorrected (L)
signals can be used for De estimation.

2.2.4 Fast ratio of the signal

In the function analyseBINdata(), the user can also set the
arguments FR.fchn, FR.mchn and FR.lchn, denoting the
channels for fast component, medium component and back-
ground, respectively, to estimate the “fast ratio” (Durcan &
Duller, 2011) for quantifying the dominance of the fast com-
ponent in the initial test-dose response for the natural dose
(Tn). Since the fast ratio will vary depending on the power
density and wavelength of stimulation source being used for
OSL measurements, the channel integrals used to determine
it (i.e., FR.fchn, FR.mchn, FR.lchn) are set to NULL by de-
fault. So the fast ratio will not be calculated unless the values
of FR.fchn, FR.mchn, FR.lchn are specified by the user.

2.2.5 Output signal analysis results

The function analyseBINdata() returns an invisible list of
S3 class object “analyseBIN”. The SAR data related quanti-
ties (such as the position and grain numbers, SAR cycles,
doses, signals and backgrounds for each aliquot or grain,
etc) can be output into a named CSV file via the argument
outfile. Figure 3 shows an example of the quantities saved
in a CSV file.

2.2.6 Comparing results of signal analysis with Analyst

Figure 4 compares sensitivity-corrected natural signal Ln/Tn
and associated standard errors estimated using ‘numOSL’

(version 2.3) and Analyst (version 4.31.9), using the single-
grain data from sample HF11 from Haua Fteah (Cyrenaica,
northeast Libya) (Douka et al., 2014; Li et al., 2016; Jacobs
et al., 2017). The Pearson correlation coefficient R2 = 1 in-
dicates that Ln/Tn and associated standard errors (based on
Poisson distribution) calculated using the two software pack-
ages are identical (Fig. 4A–B). However, since the count-
ing statistics of the reader used to measure this sample does
not follow a Poisson distribution (i.e., kph = 1.37 and kdc =
1.92), the standard errors of Ln/Tn estimated using eqn. (2)
are systematically larger than those estimated using eqn. (1)
(Fig.4C); this suggests that the uncertainty of the sensitivity-
corrected signal determined using eqn. (1) is likely to be
underestimated when photon count numbers do not follow a
Poisson distribution.

2.3. SAR De analysis
Function calSARED() calculates a series of SAR De val-

ues for different aliquots (grains) in a batch model using the
data stored in the object “analyseBIN”. Both De determina-
tion and rejection of unreliable De estimates can be achieved
using this function.

2.3.1 Growth curve fitting

Fitting of the regenerative-dose data is implemented in-
ternally according to the Levenberg-Marquardt algorithm
(Moré, 1978). In the function calSARED(), five models can
be chosen for growth curve fitting via the argument model,
including:

f (x) = ax+b (4)

f (x) = a[(1− exp(−bx)])+ c (5)

f (x) = a[1− exp(−bx)]+ cx+d (6)

f (x) = a[1− exp(−bx)]+ c[1− exp(−dx)]+ e (7)

f (x) = a[1− (1+bcx)−1/c]+d (8)

Eqn. (4)–(8) describe the linear (LINE, model=’line’),
single saturation exponential (EXP, model=’exp’), single
saturation exponential plus linear (LEXP, model=’lexp’),
double saturation exponential (DEXP, model=’dexp’), and
general order kinetic model (GOK, model=’gok’) (Gural-
nik et al., 2015), respectively. Where x and f (x) denote re-
generative dose and corresponding dose response signal, re-
spectively, and a,b,c,d,e are parameters to be optimised. It
is vitally important that the number of data points (N) to be
fitted should at least be equal to the number of model param-
eters (n). The optimal parameters are obtained through “trial-
and-error”. Argument weight is a logical value indicating if
the growth curve should be fitted using a weighted procedure
(weighted by the inverse variance of individual data point).
Argument trial is a logical value indicating if the growth
curve should be fitted using other models if the given model
fails. Growth curves can be fitted with more flexibility dur-
ing the batch process by setting trial=TRUE. For example,
if the fitting model is specified as LEXP, then a number of
models (i.e., LEXP, GOK, EXP, LINE) will be tried one after
another until the fit succeeds when trial=TRUE. In contrast,
only the LEXP model will be tried if trial=FALSE.

The GOK model (Guralnik et al., 2015) is used by default
in the function calSARED(). This model is highly recom-
mended for batch analysis given its generality and robust-
ness. In the GOK model, a denotes the maximum signal
level, b is the reciprocal of the saturation dose D0, c is a
kinetic order modifier, and d is an offset accounting for po-
tential “recuperation” effects. For c→ 0, the GOK model
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Figure 3. An example of the CSV file output by function analyseBINdata(). Init and BG denote the initial and background signals,
respectively. Lx=Init-BG, Tx=TInit-TBG, LxTx=Lx/Tx, seLx, seTx, and seLxTx are the standard errors of Lx, Tx, and LxTx, respectively.

reduces to the EXP model, but as c increases, the GOK
model progressively deviates from first-order behaviour and
approximates the LEXP or DEXP model. Guralnik et al.
(2015) demonstrated that the GOK model can successfully
capture the behaviours of different materials and experimen-
tal conditions using a minimum number of model parame-
ters.

The performance of the GOK model was tested and com-
pared to other models using a large number of single-grain
data sets from sample HF11, as shown in Fig.5. A total of
665 growth curves were fitted using different models. It turns
out that the numbers of grains that fail in fitting are 0, 0, 310,
and 237 for the EXP, GOK, LEXP, and DEXP models, re-
spectively. This suggests that the universality and flexibility
of EXP and GOK models are significantly better than the
LEXP and DEXP models. The goodness-of-fit (see the next
section) of the GOK model is marginally better than the EXP
model (Fig. 5A–B) and comparable to the LEXP and DEXP
models (Fig. 5C–F). Based on this comparison, we use GOK
as a default fitting model for a batch analysis.

2.3.2 Goodness of fit

Two criteria are employed to measure the goodness-of-
fit, i.e., the reduced chi-square (RCS) and figure-of-merit
(FOM). The RCS is routinely provided in Analyst to mea-
sure the quality of fit of growth curves, which is defined as
follows:

RCS =
1

N−n
×Σ

(yo
i − y f

i )
2

σ2
i

(9)

where yo
i and y f

i denote the i− th observed and fitted val-
ues, respectively, N and n denote the number of data points
and the number of model parameters, respectively, and σi de-
notes the standard error for the i− th observation. The value
of RCS approximates unity if the fitting model is a good
approximation of the observations (Bevington & Robinson,
2002). RCS greater than 1 indicates that the fitting function
is not appropriate for describing the data points. However, a
RCS less than 1 does not necessarily indicate a high-quality
fit. A value of RCS that is very small may indicate overes-
timation of the uncertainties of observations (Bevington &
Robinson, 2002) or an inappropriate assignment of fitting
model.

The FOM is widely used to measure the goodness-of-fit
in thermoluminescence (TL) glow curve deconvolution (Bos
et al., 1994; Pagonis & Kitis, 2002). According to Balian &
Eddy (1977), the FOM is defined as follows:

FOM = 100%×
Σ|yo

i − y f
i |

Σy f
i

(10)

Balian & Eddy (1977) considered a good fit to have a FOM
value of less than 2.5 %. Horowitz & Yossian (1995) sug-
gested that a FOM value on the order of a few percent in-
dicates an accurate fit for their computerized glow curves.
According to our experience, the upper limit on FOM should
not exceed 10%.
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Figure 4. Comparison of Ln/Tn (A) and its standard error (B) calculated using ‘numOSL’ and Analyst, using 176 grains from sample HF11.
The net OSL was calculated using the “late” background subtraction method. The numbers of channels used for signal and background
integration are 5 and 10, respectively. A relative standard error of 2% per measurement was combined in quadrature with the uncertainty of
the net OSL by setting argument me=2 in function analyseBINdata(). The dashed line indicates y = x. (C) Comparison of standard error
of Ln/Tn estimated using Poisson and over Poisson distributions of photon counts. Correction factors were set as kph = 1.37 and kdc = 1.92,
and the dark count rate was set equal to 70 cts/s.

Both RCS and FOM have their own advantages and dis-
advantages as a measurement of goodness-of-fit of growth
curves. Firstly, the RCS takes the standard errors of observa-
tions into consideration, while the FOM takes only the dif-
ferences between observed and fitted data into account. For
dim samples where large counting uncertainties are associ-
ated with the measured signals, large scatter may be expected
for their growth curves. In this case, the growth curve under
analysis may yield small RCS but large FOM. On the con-
trary, a bright sample may have well-behaved growth curves
that can yield small fitting residuals (or FOM values) but
high RCS values (due to the small error in signal). Secondly,
the differences between the observed and fitted data are nor-

malised using the fitted data in FOM, but this is not the case
for RCS. Such a normalisation has an advantage to avoid the
problem that the difference between the observed and fitted
values increases with the size of observed values. As a result,
FOM is more appropriate for comparing the quality of fit be-
tween growth curves that have significantly different mag-
nitudes in signal intensity. Finally, according to Eqn. (9),
RCS is only suitable for cases where the numbers of data
points N is larger than the number of model parameters n.
According to our experience, most of the growth curves with
a RCS value below 5 and a FOM value below 10 may have
an satisfactory fit; the user can, however, set a more stringent
criterion by using smaller RCS and FOM values.
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Figure 5. Comparison of goodness-of-fits between the GOK model and the EXP, LEXP, DEXP models. CS and FOM are short for chi-square
and figure-of-merit values, respectively. The dashed line indicates y = x.
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2.3.3 Error estimation in De

The function calSARED() employs two methods proposed
by Duller (2007) to estimate the standard error of De esti-
mate, i.e., simple transformation and Monte Carlo simula-
tion (also called a “parameter bootstrap” method) by speci-
fying the argument errMethod. For the simple transforma-
tion method used in Analyst, the standard error of the natural
signal is combined in quadrature with the uncertainty of the
fitted growth curve (i.e., the average deviation between ob-
served and fitted data) (Duller, 2007):

avgDev =

√
Σi=N

i=1 (y
0
i − y f

i )
2

N
(11)

This combined error is then propagated through interpo-
lation on the growth curve to calculate the lower and upper
limits on the De estimate and associated error. The simple
transformation method takes less calculation resource and is
less time-consuming compared to the Monte Carlo method.
It should be mentioned that a finite upper limit on De can-
not be obtained if the natural signal (Ln/Tn) is statistically
consistent with, or above, the saturation level of the growth
curve, indicating that the natural signal of the aliquot (grain)
may have been saturated. When the simple transformation
method is used, the function calSARED() estimates De error
as well as its 68 (one sigma) and 95% (two sigma) confidence
intervals by assuming that the sampling distribution of De is
approximately normal (Galbraith & Roberts, 2012).

For the Monte Carlo method, the assessment of standard
error of De estimate involves calculating a number of De val-
ues by randomly generating natural and regenerative signals
according to Gaussian distributions. The 68% and 95% con-
fidence intervals of De are derived directly from the sampling
distribution of randomly simulated De. This method provides
more reliable confidence interval estimates, especially when
the sampling distribution of De is not approximately normal.
It must be pointed out, however, that, when the natural sig-
nal lies on the non-linear region of a saturating exponential
growth curve, the distribution of randomly simulated De us-
ing the Monte Carlo method tends to have an asymmetric
distribution. As a result, the distribution of randomly simu-
lated De may be significantly truncated if De > 2D0 (D0 de-
notes the characteristic saturation dose in a saturating expo-
nential function) (or Ln/Tn exceeds about 85% of the satura-
tion level). This is because many of the randomly simulated
natural signals may not intersect the corresponding growth
curve. In this situation, both the mean random De and the De
error are likely to be underestimated.

2.3.4 SAR De selection using rejection criteria

In OSL dating, it is important to select aliquots (grains) that
are suitable for De determination. Potential rejection criteria
can be divided into several categories, including (1) signal-
related criteria, such as whether the test-dose response for the
natural dose (Tn) is more than 3 sigma above the background
(BG) (Jacobs et al., 2006), ratio of initial signal to BG for

Tn, relative standard error of Tn (Ballarini et al., 2007), and
fast ratio of Tn (Madsen et al., 2009; Durcan & Duller, 2011;
Duller, 2012); (2) growth-curve-related criteria, such as recy-
cling ratio (Wintle & Murray, 2006), OSL-IR depletion ratio
(Duller, 2003), recuperation (Wintle & Murray, 2006), and
goodness of fit; (3) De-related criteria, such as the methods
used for De determination (interpolation or extrapolation),
relative standard error of De, etc.

We have incorporated a range of rejection criteria for ex-
tracting reliable De estimates in the function calSARED(),
including (a) Tn.above.3BG: if the net test-dose OSL re-
sponse for the natural dose (Tn) is 3 sigma above the back-
ground; (b) TnBG.ratio.low: lower limit on the ratio of
initial signal to background for Tn; (c) rseTn.up: upper
limit on the relative standard error of Tn; (d) FR.low: lower
limit on the fast ratio of Tn; (e) rcy1.range, rcy2.range,
and rcy3.range: lower and upper limits on recycling ra-
tios (note that only the first three identical doses are taken
into account); (f) rcp1.up and rcp2.up: upper limits on
recuperation (note that rcp1 and rcp2 are the ratios of the
sensitivity-corrected zero-dose signal to natural signal and
to the signal from the maximum regenerative dose, respec-
tively); (g) fom.up: upper limit on the FOM of fitted growth
curve; (h) rcs.up: upper limit on the RCS of fitted growth
curve; (i) calED.method: the method used for De determi-
nation (interpolation or extrapolation); (j) rseED.up: upper
limit on the relative standard error of De. Among the rejec-
tion criteria listed above, (a)–(d) are signal-related, (e)–(h)
are growth-curve-related, and (i)–(j) are De-related. Argu-
ment use.se is a logical value indicating if standard errors
(two sigma) are taken into consideration during application
of rejection criteria. Note that the user does not have to spec-
ify arguments for all the rejection criteria listed above. If the
user does not want to consider a particular rejection criterion
then they can simply leave the argument out of the function.

It should be noted that if the sensitivity-corrected sig-
nals for the first, second, and third repeated regener-
ative doses are Lr1/Tr1 , Lr2/Tr2 , and Lr3/Tr3 , respec-
tively, then the first, second and third recycling ratios are
calculated as [Lr2/Tr2 ]/[Lr1/Tr1 ], [Lr3/Tr3 ]/[Lr1/Tr1 ], and
[Lr3/Tr3 ]/[Lr2/Tr2 ] (similar to Analyst). The lower and up-
per limits on recycling ratios can be specified directly by the
user to apply recycling ratio criteria. In contrast, the applica-
tion of the OSL-IR depletion ratio criterion is not straightfor-
ward. For example, if three duplicate regenerative doses are
administrated and OSL responses from the first two regener-
ative doses are measured without infrared stimulation while
only the 3rd one is measured after being exposed to infrared
stimulation, then the OSL-IR depletion ratio will be calcu-
lated using the third recycling ratio (i.e., [Lr3/Tr3 ]/[Lr2/Tr2 ].
In this case, the user needs to specify argument rcy3.range
to apply the OSL-IR depletion ratio criterion.

The function calSARED() calculates two recuperation ra-
tios: the first (“recuperation-1”) is the ratio of the sensitivity-
corrected zero-dose to natural signals ([L0/T0]/[Ln/Tn]),
which is commonly adopted as a measure of extent of ther-
mal transfer (Murray & Wintle, 2000). However, for young
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samples whose natural doses are close to zero or sensitivity-
corrected natural signals are close to background, applying
a low limit on “recuperation-1” may result in many grains
(aliquots) being rejected. This may bias the results towards
acceptance of older grains or aliquots whose natural signal
are higher, and, hence, may overestimate the final De re-
sults. In this case, therefore, it is more reasonable to use
“recuperation-2”, the ratio of the zero-dose signal to that of
the maximum regenerative dose ([L0/T0]/[Lmax/Tmax]), as an
indicator of the extent of thermal transfer.

The function calSARED() was designated according to
the principle that calculation resources should be saved as
much as possible. For this purpose, signal-related rejection
criteria (a–d) are applied firstly, and those aliquots (grains)
rejected by these criteria will not be considered during the
next step of analysis. The growth-curve-related criteria (e–h)
are then applied to the culled data set, before the De-related
criteria (i–j) are applied to any remaining aliquots (grains).
The function returns a summary table (as shown in Fig. 6)
showing the numbers of aliquots (grains) rejected by each of
the specified rejection criterion and the number of aliquots
(grains) that cannot be successfully calculated using func-
tion calED() (such as, improper input arguments, failure in
growth curve fitting, saturation in natural signal, failure in
De calculation or De error estimation, etc). Providing such
a summary table is crucial, as it reveals the variability of lu-
minescence behaviours of different grains or aliquots, and it
has been widely used as the standard output information in
single-grain dating (e.g. Feathers, 2003; Jacobs et al., 2006,
2015; Armitage et al., 2011; Arnold et al., 2012).

2.3.5 Output SAR De analysis results

The function calSARED() provides two arguments to output
SAR De analysis results. The results of SAR De determina-
tion obtained through the batch process can be output graph-
ically into a named PDF file via the argument outpdf. The
SAR De related quantities (such as the position and grain
numbers, values of rejection criteria, natural signal and as-
sociated standard error, standard error and confidence inter-
vals of each accepted De estimate, etc.) can be output into a
named CSV file via the argument outfile.

2.3.6 Comparing results of SAR De determination with
Analyst

Figure 7 shows comparison between the De estimates and
their associated standard errors determined using ‘numOSL’

andAnalyst, for single grains of sample HF11. The results
obtained using the simple transformation method are indis-
tinguishable (R2 = 1) between the two software packages
(Fig.7A–B). The De errors estimated using the Monte Carlo
method are also consistent with each other (R2 = 0.974)
(Fig. 7C).

2.4. SGC De analysis
2.4.1 Select growth curves to establish SGC

SGC should be established using only those aliquots (grains)
considered to be well-behaved so that reliable growth curves
are produced (Li et al., 2016). Accordingly, poorly-behaved
grains (aliquots) should be identified and rejected before-
hand. In order to achieve this, function pickSARdata()

uses rejection criteria similar to (but with exclusion of the
De-related criteria) those used in function calSARED() to
enable the user to select well-behaved grains or aliquots to
establish SGC. The input of the function is an object “analy-
seBIN” produced by function analyseBINdata(). In or-
der to save calculation resources, the design of function
pickSARdata() is similar to the function calSARED().

It is noted that, for single-grain quartz, different grains
may have considerably different growth curve shapes (Li
et al., 2016), which may prevent the establishment of a com-
mon SGC for all the grains. For such samples, Li et al. (2016)
found that growth curves from different grains for their sam-
ples from Haua Fteah (Cyrenaica, northeast Libya) can be
divided into three broad groups (i.e., “early”, “medium” and
“later”), with each group saturating at a different dose level.
Each group of grains, however, share a common SGC, and
the SGCs from different groups are identical up to a dose of
50 Gy after which they start to significantly deviate. There-
fore, it is necessary to characterise the growth curves from
different aliquots (grains) to check whether it is appropriate
to establish a common SGC for the samples under consider-
ation.

2.4.2 LS-normalisation

In comparison to the original SGC method from Roberts &
Duller (2004) and the re-normalisation method from Li et al.
(2015a,b), the LS-normalisation method of Li et al. (2016)
can further reduce the variation of growth curves between
aliquots (grains) measured from the same or different sam-
ples. This has been validated not only experimentally using
natural sedimentary samples (Li et al., 2016) but also con-
firmed theoretically by modeling and simulation (Peng et al.,
2016).

According to Li et al. (2016), the LS-normalisation pro-
cedure for SGC optimization involves the following steps:
(1) fit regenerative-dose signals from all aliquots (grains)
using a best-fit model (e.g., single saturating exponential
function); (2) re-scale regenerative-dose signals from each
aliquot (grains) using scaling factors determined in a way
such that the difference between the re-scaled sensitivity-
corrected regenerative-dose signals and the fitted common
growth curve is minimised through an optimization proce-
dure; each aliquot (grain) is treated individually, and dif-
ferent scaling factors are determined for different aliquots
(grains); (3) repeat the fitting (step 1) and re-scaling (step
2) procedures iteratively. The iteration is performed repeat-
edly until there is negligible change in the relative standard
deviation of re-scaled regenerative-dose signals.
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Figure 6. A summary of results of SAR De analysis for 500 grains of sample HF11 reported from function calSARED(). Numbers of
grains rejected according to user-supplied criteria and numbers of grains that cannot be successfully analysed using function calED() are
summarised.

Figure 7. Comparison between SAR De values and associated standard errors obtained using ‘numOSL’ and Analyst, using 176 single grains
from sample HF11. The dashed line indicates y = x. Note that the unit of De is in irradiation time (second) rather than in Gy.
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Li et al. (2016) found that the re-scaled regenerative-dose
signals for the “early” group of their samples were best fitted
using the EXP model, whereas those for the “medium” and
“later” groups were best described using the DEXP model.
They proposed that the best-fit model can be chosen on the
basis of a chi-squared statistical test. However, during the
application of this method, one needs to apply all possible
models (such as LINE, EXP, LEXP, and DEXP) one after
the other to the data to find out the best-fit model that yields
the lowest chi-square value. For large data sets, the process is
tedious and time-consuming. The function lsNORM() avoids
the problem by applying the GOK model to fitting the data
during the LS-normalisation process by default. The kinetic
order modifier c in the GOK model (see eqn. (8)) automati-
cally adjusts its magnitude to capture the variation pattern of
the data during the fitting process.

We tested the performance of the function lsNORM()

using randomly simulated growth curve data according to
the kinetic model of Bailey (2001). The simulation was
implemented using the R program KMS (Peng & Pago-
nis, 2016). The simulation steps are similar to those sum-
marised in the Table 2 of Peng et al. (2016). The ex-
perimentally observed variability in OSL characteristics of
quartz grains was simulated by allowing trap concentra-
tions to vary randomly within ±60% of the original ki-
netic parameters of Bailey (2001), using uniformly dis-
tributed random numbers. Growth curves were simulated
using regenerative doses of 0.4Dn, 0.8Dn, 1.2Dn, 1.6Dn,
0, and 0.4Dn Gy, where Dn stands for the natural dose and
was simulated uniformly between 0 Gy and 200 Gy. The
test dose was simulated uniformly from discrete numbers
[0.1Dn,0.15Dn,0.2Dn,0.25Dn]. The natural and laboratory
dose rates were simulated uniformly from discrete num-
bers [1× 10−3,1× 10−5,1× 10−7,1× 10−9,1× 10−11] and
[0.2,0.4,0.6,0.8,1.0]Gy/s, respectively. The pre-heat and
cut-heat temperatures were simulated uniformly from dis-
crete numbers [240,250,260] and [200,210,220]◦C, respec-
tively.

The simulation result using 300 versions of model vari-
ants is shown in Fig.8A. It demonstrates that growth
curve data simulated using various series of regenera-
tive doses, test doses, natural and laboratory dose rates,
and pre-heat and cut-heat temperatures show significantly
difference in their shapes and magnitudes. The scat-
ter of the data reduced significantly after being standard-
ised using their test doses (Fig.8B). The variability of
the data further decreased after being re-normalised using
the sensitivity-corrected regenerative-dose signal at 200 Gy
(Fig. 8C). The growth curve data re-scaled using the function
lsNORM()demonstrate the lowest variability and best quality
of fit (Fig. 8D).

It should be pointed out that, though the re-normalisation
procedure of Li et al. (2015a,b) further reduces the scat-
ter of growth curve data compared to the original SGC
method of Roberts & Duller (2004), the application of the re-
normalisation requires administration of a common regener-
ative dose (200 Gy in Fig. 8C) for different grains or aliquots.

As a result, it is inapplicable if the growth curves used for
SGC establishment do not share one common regenerative
dose. In contrast, the LS-normalisation procedure of Li et al.
(2016) does not require a common regenerative dose among
all growth curves. This means that the normalisation can be
implemented in a more flexible manner and it is possible to
obtain more optimal results.

2.4.3 SGC De determination

Once a common SGC has been established, the sensitivity-
corrected natural signal should be multiplied by a scaling fac-
tor, determined from the established SGC and an additional
sensitivity-corrected regenerative-dose signal, to obtain the
re-scaled natural signal in order to calculate a SGC De using
the following formula:

L′n
T ′n

=
Ln

Tn
× f (Dr)

Lr
Tr

(12)

where L′n/T ′n denotes the re-scaled sensitivity-corrected
natural signal, Dr and Lr/Tr denote the additional regen-
erative dose used for normalisation and the corresponding
sensitivity-corrected signal, respectively, and f (Dr) denotes
the signal of Dr predicted using SGC established by LS-
normalisation.

Function calSGCED() calculates De using the parame-
ters (supplied using the argument SGCpars) of the SGC
established externally through the function lsNORM() or
fitGrowth(). De values can be calculated using the orig-
inal SGC method proposed by Roberts & Duller (2004) (if
argument method=’SGC’) and the improved SGC method
suggested by Li et al. (2016) (if argument method=’gSGC’).
Unlike function calSARED(), only signal-related rejection
criteria can be used to select reliable De estimates in func-
tion calSGCED().

The simple transformation method (rather than the Monte
Carlo method) is implemented in function calSGCED() to
assess error estimate of SGC De by default. During the ap-
plication of the simple transformation method, the average
deviation of established common SGC calculated according
to eqn (11) is combined in quadrature with the uncertainty of
the natural signal to account for the uncertainty of the SGC.
This error term was taken into account via argument avgDev.
The results of SGC De determination obtained through the
batch process can also be output graphically into a named
PDF file via the argument outpdf.

3. Worked examples
In this section, detailed examples for SAR and SGC De

analysis are presented using R code templates. These tem-
plates are available from the supplementary and can be easily
adapted by users for their own De analysis.
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Figure 8. (A) Distribution of 300 randomly simulated growth curve data sets. Data shown in (B) was obtained by standardising the data from
(A) using their corresponding test doses Dt. Data shown in (C) was obtained by re-normalising the data from (A) using sensitivity-corrected
regenerative-dose signals at 200 Gy. Data shown in (D) was obtained by re-scaling the data from (A) using the LS-normalisation procedure.
The dashed blue lines indicate the best-fit curves obtained using the GOK model.

3.1. SAR De determination and rejection criteria ap-
plication

We first load package ‘numOSL’ into the R con-
sole using the first line of command (#1). BIN file
”HF11(SG Qtz 500 Grains).BIN” (available in the supple-
mentary material) contains 500 grains of quartz OSL re-
sults for sample HF11. The file was loaded using function
loadBINdata() and saved in object res loadBINdata ac-
cording to the commands in lines 2–3. The user needs to
ensure that the BIN or BINX files to be imported are lo-
cated in the current working directory. Imported single-grain
data stored in res loadBINdata with luminescence type of
”TRPOSL” were selected using function pickBINdata()

according to the commands in lines 4–6.

1 l i b r a r y (numOSL)
2 r e s loa dBINda ta <− l oadBINda ta (

3 ”HF11 (SG Qtz 500 G r a i n s ) . BIN” )
4 r e s p i ckBINda ta <− p ickBINda ta (
5 r e s loadBINdata ,
6 LType=”TRPOSL” )

Extracted data records stored in object
res pickBINdata were analysed using the function
analyseBINdata() (the code in lines 7–13). The numbers
of signal and background channels were set equal to 5
and 10, respectively (nfchn=5, nlchn=10). The “late”
background subtraction method was used for net signal
calculation (bg=’late’). A measurement error of 2 % was
given on each OSL measurement (i.e., L or T ) (me=2). The
photon counts were assumed to follow a Poisson distribution
(distp=’p’). Argument signal.type=’LxTx’ means that
the sensitivity-corrected signal (L/T ) was extracted. Results
saved in a CSV file named ”analyseBIN.csv” (available in
the supplementary material) were output to the current work-
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ing directory by using argument outfile=’analyseBIN’.
7 r e s a n a l y s e B I N d a t a <−
8 a n a l y s e B I N d a t a (
9 r e s p ickBINdata , n fchn =5 ,

10 n l c h n =10 , bg=” l a t e ” ,
11 me=2 , d i s t p =” p ” ,
12 s i g n a l . t y p e =”LxTx” ,
13 o u t f i l e =” ana lyseBIN ” )

Resultant data stored in object res analyseBINdata

were used to perform SAR De analysis using function
calSARED() (code in lines 14–25). The GOK model was
used and all growth curves were not forced to pass the origin
(model=’gok’, origin=FALSE). The Monte Carlo method
was used for De error assessment and the desired num-
ber of simulation was set equal to 500 (errMethod=’mc’,
nsim=500), i.e., simulation will be performed repeatedly un-
til 500 random De are generated. The acceptance rate of the
Monte Carlo simulation is defined as the ratio of the number
of obtained De to the total number of simulations. For exam-
ple, if 1,000 simulations are performed and only 500 random
De values are generated, then the acceptance rate of the sim-
ulation is 50 %. A low acceptance rate may imply that the
model is not appropriate to fit the growth curve or the natural
signal (Ln/Tn) is close to saturation; in the latter case a large
number of simulated natural signals do not intersect with the
simulated growth curves, so finite De cannot be obtained. Ar-
gument trial=TRUE ensures that other models will be tried
if the given model fails in growth curve fitting.

Three signal-related rejection criteria (Tn.above.3BG,
TnBG.ratio.low, and rseTn.up), five growth-curve-
related criteria (rcy1.range, rcy3.range, rcp2.up,
fom.up, and rcs.up), and one De-related criterion
(calED.method) were then applied to select acceptable De
values. Standard errors were taken into account during the
application of rejection criteria (use.se=TRUE). The result
of SAR De calculation was output to a PDF file named
”calSARED.pdf” and a CSV file named ”calSARED.csv”
(outpdf=’calSARED’, outfile=’calSARED’) (available
in the supplementary material). The SAR De analysis result
for a grain of sample HF11 is shown in Fig. 9. A total of 356
grains were rejected according to these rejection criteria and
144 De values were obtained (as summarised in Fig. 6).

14 r e s calSARED <− calSARED (
15 r e s a n a l y s e B I N d a t a ,
16 model=” gok ” , o r i g i n =FALSE ,
17 e r rMethod =”mc” , nsim =500 ,
18 t r i a l =TRUE, Tn . above . 3BG=TRUE,
19 TnBG . r a t i o . low =3 , r seTn . up =30 ,
20 r cy1 . r a n g e =c ( 0 . 9 , 1 . 1 ) ,
21 r cy3 . r a n g e =c ( 0 . 9 , 1 . 1 ) ,
22 r cp2 . up =5 , fom . up =10 , r c s . up =5 ,
23 calED . method=” I n t e r p o l a t i o n ” ,
24 use . s e =TRUE, o u t p d f =”calSARED” ,
25 o u t f i l e =”calSARED” )

The calculated SAR De distribution for the 144 grains was
visualized using a simplified (pseudo) radial plot (Galbraith,
1988) implemented using function psRadialPlot() from
the ‘numOSL’ package (the code in lines 26–29) (Fig. 10).
The lower and upper limits on the z-axis are controlled by
the arguments zmin and zmax, respectively.

26 p s R a d i a l P l o t (
27 r e s calSARED$sarED ,
28 zmin =450 , zmax =2100 ,
29 z l a b e l =”De ( s ) ” )

3.2. Growth curve selection, LS-normalisation, and
SGC De determination

BIN file ”SA Qtz example.BIN” (available in the sup-
plementary material) contains 24 multiple-grain aliquots
of quartz OSL results for a fluvial sample from Shanxi
province in China. The file was loaded and OSL data
was selected using the commands in lines 30–31 and 32–
33, respectively. Then we analysed the signal data us-
ing the R command in lines 34–38. We use function
pickSARdata() to select well-behaved growth curves from
data object res analyseBINdata1 using the commands in
lines 39–47. Three signal-related criteria (Tn.above.3BG,
TnBG.ratio.low, and rseTn.up) and four growth-curve-
related criteria (rcy1.range, rcp1.up, fom.up, and
rcs.up) were applied to select well-behaved growth curves.
The results are output into a PDF file named ”pickSAR-
data.pdf” (available in the supplementary material). Fig-
ure 11 shows results output by the function pickSARdata()

for an aliquot of this sample.

30 r e s loadBINda ta1 <− l oadBINda ta (
31 ”SA Qtz example . BIN” )

32 r e s p i ckBINda ta1 <− p ickBINda ta (
33 r e s loadBINdata1 , LType=”OSL” )

34 r e s a n a l y s e B I N d a t a 1 <−
35 a n a l y s e B I N d a t a (
36 r e s p ickBINdata1 , n fchn =10 ,
37 n l c h n =20 , bg=” l a t e ” , me=2 ,
38 d i s t p =” p ” , s i g n a l . t y p e =”LxTx” )

39 r e s pickSARdata <− pickSARdata (
40 r e s an a ly seBINda ta1 ,
41 model=” gok ” , o r i g i n =FALSE ,
42 Tn . above . 3BG=TRUE,
43 TnBG . r a t i o . low =3 , r seTn . up =30 ,
44 r cy1 . r a n g e =c ( 0 . 9 , 1 . 1 ) ,
45 r cp1 . up =10 , fom . up =10 ,
46 r c s . up =5 , use . s e =TRUE,
47 o u t p d f =” pickSARdata ” )

We use commands in lines 48–51 to optimise the
selected growth curve data from well-behaved aliquots
stored in res pickSARdata$SARdata according to the LS-
normalisation procedure using function lsNORM(). The al-
lowed maximum number of iterations is set equal to 10
(maxiter=10). The automatically generated plot is shown
in Fig. 12.

48 r e s lsNORM <− lsNORM(
49 r e s pickSARdata $SARdata ,
50 model=” gok ” , o r i g i n =FALSE ,
51 m a x i t e r =10)

The commands in lines 52–61 were used to calcu-
late SGC De according to the method of Roberts &
Duller (2004). Objects res lsNORM$LMpars1[,1] and
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Figure 9. Results of SAR De calculation produced using function calSARED() for one of the grains of sample HF11.The upper plot shows
results of growth curve fitting, De determination, and De error assessment using the Monte Carlo method. The distribution of the simulated De
is shown in the grey area. The lower left plot shows the decay curves for the natural dose and its test dose. The lower right plot demonstrates
the variation in the ratio of Tx to Tn for different SAR cycles. The right panel summarises the results of De calculation. The 68 % (one sigma)
and 95 % (two sigma) confidence intervals of De were determined from the sampling distribution of randomly simulated De using the Monte
Carlo method. Note that the unit of dose is in irradiation time (second) rather than in Gy.

res lsNORM$avg.error1 stand for the parameters and av-
erage deviation of the common SGC, respectively, estab-
lished using growth curve data that have not been re-scaled
by LS-normalisation. res lsNORM$LMpars1 is a two-
column matrix in which SGC parameters and associated
standard errors are stored in the first and second column, re-
spectively. SGC parameters stored in the first column are ac-
cessed using res lsNORM$LMpars1[,1]. The average devi-
ation was used to account for uncertainty of the SGC, which
was incorporated into the estimation of De error using the
simple transformation method. It is of vital importance that
arguments model and origin used in function calSGCED()

are consistent with those used in function lsNORM()if the
same parameters used in function calSGCED() are derived
from the output of function lsNORM(). Three signal-related

criteria (Tn.above.3BG, TnBG.ratio.low, and rseTn.up)
were employed to select acceptable SGC De estimates (note
that growth-curve-related criteria are inapplicable for the
SGC method). The results of SGC De calculation were out-
put into a PDF file named ”SGCED.pdf” (available in the
supplementary material).

52 r e s SGCED <− calSGCED (
53 r e s an a ly seBINda ta1 ,
54 SGCpars= r e s lsNORM$LMpars1 [ , 1 ] ,
55 model=” gok ” , o r i g i n =FALSE ,
56 avgDev= r e s lsNORM$ avg . e r r o r 1 ,
57 method=”SGC” , e r rMethod =” sp ” ,
58 SAR . Cycle =”N” ,
59 Tn . above . 3BG=TRUE,
60 TnBG . r a t i o . low =3 , r seTn . up =30 ,
61 use . s e =TRUE, o u t p d f =”SGCED” )
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Figure 10. De distribution for 144 single grains from sample HF11
calculated using function calSARED() visualized using a pseudo
radial plot.

The commands in lines 62–72 were used to calculate SGC
De according to the method of Li et al. (2016). Objects
res lsNORM$LMpars2[,1] and res lsNORM$avg.error2

stand for the best-fit parameters and associated average de-
viation of the SGC established using LS-normalisation, re-
spectively. Note that in order to calculate SGC De using the
method of Li et al. (2016), the sensitivity-corrected natural
signal and an additional sensitivity-corrected regenerative-
dose signal need be specified (via argument SAR.Cycle).
SAR.Cycle=c("N","R2") means that the second regenera-
tive dose will be used to re-scale the natural signals for SGC
De calculation. Figure 13 shows results of SGC De calcula-
tion for an aliquot of the fluvial sample.

62 r e s gSGCED <− calSGCED (
63 r e s an a ly seBINda ta1 ,
64 SGCpars= r e s lsNORM$LMpars2 [ , 1 ] ,
65 model=” gok ” , o r i g i n =FALSE ,
66 avgDev= r e s lsNORM$ avg . e r r o r 2 ,
67 method=”gSGC” , e r rMethod =” sp ” ,
68 SAR . Cycle =c ( ”N” , ”R2” ) ,
69 Tn . above . 3BG=TRUE,
70 TnBG . r a t i o . low =3 ,
71 r s eTn . up =30 , use . s e =TRUE,
72 o u t p d f =”gSGCED” )

Finally, to test the reliability of SGC De determined
above, we compared the SGC De values with those deter-
mined using the full SAR protocol. SAR De calculation
using the data sets stored in object res analyseBINdata1

was implemented using the commands in lines 73–83. Here
the fitting model and method used for De error assessment
were chosen to be consistent with those used in SGC De
calculation performed above. The commands in lines 84–
87 used the R internal function intersect() to identify
aliquots that succeed in both SAR and SGC De calculations.

73 r e s SARED <− calSARED (
74 r e s an a ly seBINda ta1 ,
75 model=” gok ” , o r i g i n =FALSE ,

76 e r rMethod =” sp ” ,
77 Tn . above . 3BG=TRUE,
78 TnBG . r a t i o . low =3 ,
79 r s eTn . up =30 ,
80 r cy 1 . r a n g e =c ( 0 . 9 , 1 . 1 ) ,
81 r cp 1 . up =10 , fom . up =10 ,
82 r c s . up =5 , use . s e =TRUE,
83 calED . method=” I n t e r p o l a t i o n ” )

84 i n d e x <− i n t e r s e c t ( i n t e r s e c t (
85 rownames ( r e s SARED$ sarED ) ,
86 rownames ( r e s SGCED$sgcED ) ) ,
87 rownames ( r e s gSGCED$sgcED ) )

The commands in lines 88–118 compare calculated De
values between SAR and SGC using a scatter plot. The SAR
De (lines 88–89) and SGC De calculated using the method
of Li et al. (2016) (lines 90–91) were used as the x and y
coordinates, respectively. To compare SAR De with SGC
De calculated using the method of Roberts & Duller (2004),
the user only needs to change res gSGCED in lines 90–91
to res SGCED. The commands in lines 103–106 and 107–
110 add error bars to the x and y coordinates, respectively.
The commands in lines 112–114 use the R internal func-
tion cor() to calculate the Pearson correlation coefficient
between SAR and SGC De.

88 sarED <− r e s SARED$ sarED [ index , 1 ]
89 s a r E D e r r <− r e s SARED$ sarED [ index , 2 ]

90 sgcED <− r e s gSGCED$sgcED [ index , 1 ]
91 sgcEDerr <− r e s gSGCED$sgcED [ index , 2 ]

92 min xy <− min ( sarED−sa rEDer r ,
93 sgcED−sgcEDerr )
94 max xy <− max ( sarED+ sarEDer r ,
95 sgcED+ sgcEDerr )

96 p l o t ( sarED , sgcED ,
97 xl im =c ( min xy , max xy ) ,
98 yl im =c ( min xy , max xy ) ,
99 x l a b =”SAR De ( s ) ” ,

100 y l a b =”SGC De ( s ) ” ,
101 pch =21 , bg=” s k y b l u e 3 ” ,
102 c o l =” s k y b l u e 3 ” , cex = 1 . 5 )

103 a r r o w s ( x0=sarED−s a r E D e r r / 2 ,
104 x1=sarED+ s a r E D e r r / 2 ,
105 y0=sgcED , y1=sgcED , code =3 ,
106 a n g l e =90 , l e n g t h = 0 . 0 5 )

107 a r r o w s ( x0=sarED ,
108 y0=sgcED−sgcEDerr / 2 ,
109 x1=sarED , y1=sgcED+ sgcEDerr / 2 , code =3 ,
110 a n g l e =90 , l e n g t h = 0 . 0 5 )

111 a b l i n e ( a =0 , b =1 , l t y =” dashed ” )

112 R2 <− round (
113 ( c o r ( x=sarED , y=sgcED ,
114 method=” p e a r s o n ” ) ) ˆ 2 , 3L )

115 l e g e n d ( ” b o t t o m r i g h t ” ,
116 l e g e n d =c ( p a s t e ( ”N=” ,
117 l e n g t h ( i n d e x ) ) ,
118 p a s t e ( ”Rˆ2= ” , R2 ) ) , b t y =” n ” )
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Figure 11. Results of growth curve selection produced using function pickSARdata() for one of the aliquots of a fluvial sample from Shanxi
province in China. The upper plot shows result of growth curve fitting. The lower left plot shows the decay curves for the natural dose and
its test dose. The lower right plot demonstrates the variation in the ratio of Tx to Tn for different SAR cycles. The right panel summarises the
results of growth curve fitting. Note that the unit of dose is in irradiation time (second) rather than in Gy.

The commands in lines 119–127 visualize the distribution
of ratios of SGC to SAR De using the pseudo radial plot. The
standard errors of the ratios were calculated using command
line 120–122. The commands in lines 123–127 use func-
tion psRadialPlot() from package ‘numOSL’ to visualize
the distribution of the ratios with a simplified (pseudo) ra-
dial plot. The central value was set equal to 1.0 (dose=1.0).
The size of points can be modified using argument psize.
Figure 14 shows comparisons between SAR De and SGC De
calculated using two different methods.

119 R a t i o <− sgcED / sarED

120 s e R a t i o <− R a t i o ∗
121 s q r t ( ( s a r E D e r r / sarED ) ˆ2+
122 ( sgcEDerr / sgcED ) ˆ 2 )

123 p s R a d i a l P l o t (
124 c b i n d ( Ra t io , s e R a t i o ) ,
125 dose = 1 . 0 , zmin = 0 . 7 ,

126 zmax = 1 . 5 , p s i z e = 1 . 5 ,
127 z l a b e l =” R a t i o o f SGC t o SAR De” )

4. Discussion
A number of functions have been provided to flexibly im-

port, select and analyse OSL data measured using a SAR pro-
cedure. The commonly used method for assessing the error
estimate of the net OSL response is based on the assumption
that the variance of photon counts follows a Poisson distri-
bution (Galbraith, 2002). However, recent studies (Li, 2007;
Adamiec et al., 2012) suggest that the variation in photon
counts are dispersed more than would be expected from a
Poisson distribution. The function analyseBINdata() es-
timates the standard error of net OSL signal using the newly
derived formula outlined by Bluszcz et al. (2015) when count
numbers do not follow a Poisson distribution. The function
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Figure 12. Results of LS-normalisation generated using function lsNORM(). The parameters (a, b, c, and d) shown in the right panel are
obtained by fitting the data shown in the left panels using the GOK model. It should be noted that if the fitting is performed using a weighted
procedure (i.e., weight=TRUE) then the “Minimized value” denotes the minimized chi-square value. For un-weighted fitting procedures (i.e.,
weight=FALSE), the “Minimized value” represents the minimized sum of squared residuals. The “Average error in fit” denotes the average
deviation (avgDev) of the fitted growth curve data. Note that the unit of dose is in irradiation time (second) rather than in Gy.

was used to analyse single-grain data from sample HF11 (Li
et al., 2016) and the results were compared to those analysed
using Analyst. This comparison suggests that the sensitivity-
corrected natural signal and associated standard error esti-
mated using the two software packages are identical to each
other when a Poisson distribution is assumed (Fig. 4A–B),
but greater standard errors are obtained when photon counts
do not follow a Poisson distribution (Fig. 4C).

Several strategies have been adopted to improve the ef-
ficiency, applicability, and practicability of the function
calSARED() for SAR De analysis. Firstly, the core function
has been programmed using the Fortran 90, instead of us-
ing pure R language, and wrapped by R using an interface.
Compared to Fortran 90, pure R language has much less ef-
ficiency in the routine if a large number of SAR data sets are
analysed (as shown in the worked example of Sec. 3.1). Sec-
ondly, the general applicability and robustness of the model

used for growth curve fitting are critical for ensuring deter-
mination of a large number of De values in a batch model
without the need for manual interference. Accordingly, be-
sides the most commonly used models (i.e., the LINE, EXP,
LEXP, and DEXP), the newly developed GOK model (Gu-
ralnik et al., 2015) has been included in our program. We
tested the performance of this model using a large number of
single-grain growth curve data from sample HF11 and other
samples (data not shown here). Our results demonstrate the
general applicability and robustness of the GOK model in
growth curve fitting (as shown in Fig. 5). Moreover, setting
argument trial=TRUE ensures that the growth curve will be
fitted using other models if the specified model fails. This
further increases the flexibility and adaptability of the func-
tion in growth curve fitting. Finally, we have integrated the
commonly used rejection criteria for selecting and rejecting
SAR De estimates into the function calSARED(). These cri-
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Figure 13. Results of SGC De calculation produced using function calSGCED() for one of the aliquots of a fluvial sample from Shanxi
province in China. The upper plot shows result of SGC De calculation. The blue line denotes the SGC established using LS-normalisation.
The lower plot shows the decay curves for the natural dose and its test dose. The right panel summarises the results of De calculation. The
68% (one sigma) and 95% (two sigma) confidence intervals of De were determined by normal approximation (not Monte Carlo simulation)
as the simple transformation method is applied here for De error assessment. Note that the unit of dose is in irradiation time (second) rather
than in Gy.

teria are applied in a manner that save calculation resources
as much as possible. For this purpose, signal-related crite-
ria are applied first, then the growth-curve-related criteria,
and the De-related criteria are considered last. We compared
SAR De and associated standard errors obtained from the
function calSARED() with those estimated from Analyst (as
shown in Fig. 7). The results between two software packages
are indistinguishable.

Two criteria (FOM and RCS) are adopted to select reliable
growth curves for SGC establishment. Generally, the FOM
is useful in selecting “absolutely perfect” growth curves by
ignoring their standard errors, while RCS also takes the stan-
dard errors into account. Note that the upper limits on FOM
and RCS used to extract “acceptable” growth curves may be
sample dependent, which needs to be further investigated and
is beyond the scope of this study.

The performance of the LS-normalisation procedure im-
plemented using the function lsNORM()was tested using ran-
domly simulated growth curve data (as shown in Fig. 8).
The results suggest that the LS-normalisation procedure is
a generally reliable method for reducing variation in growth
curves between aliquots (grains) measured from the same
or different samples. However, we would like to empha-
sise here that the SGC method should only be applied on
the basis of a careful validation, i.e., by comparing SAR and
SGC De estimates using a large number of measured SAR
data sets. It is necessary to first test whether reliable De es-
timates can be obtained using a full SAR procedure, and as-
sess the effect and importance of each of the rejection criteria
used to select SAR De; the latter is especially important be-
cause the SGC approach involves only the measurements of
natural-dose and an additional regenerative-dose cycles, so
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Figure 14. Comparison between SAR and SGC De estimates. (A) and (C) plot SAR De against SGC De determined using the methods of
Roberts & Duller (2004) and Li et al. (2016), respectively. (B) and (D) show distributions of ratios of SGC De determined using the methods
of Roberts & Duller (2004) and Li et al. (2016) to SAR De, respectively. The grey bands in (B) and (D) show the 2 sigma range around the
central value at 1.

application of growth-curve-related rejection criteria (such
as recuperation, recycling ratio, FOM, and RCS) is not pos-
sible. Consequently, the user may incorporate some poorly-
behaved grains (e.g., Duller et al., 2000; Jacobs et al., 2003,
2006; Duller, 2008) into the final calculation, which may not
only induce additional uncertainty in the final results but also
may produce erroneous results.

Batch analysis of SAR and SGC data offers benefits for
standardisation of analyses and elimination of user error,
and, therefore, can substantially reduce the amount of data-
handling time. At the same time, however, we would em-
phasis and maintain that manual data analysis also has its
own advantages. We would like to suggest that one should
conduct manual data analysis at least for some of their sam-
ples or some of the measured grains, particularly for un-
derstanding potentially problematic OSL behaviours, better
characterisation of variable OSL properties between sam-
ples, and for identifying behavioural trends that might go

unnoticed when using automated procedures. In reality, the
optimum approach for SAR analysis of a large number of
data sets undoubtedly lies in combining both practices to-
gether, particularly when working on previously unstudied
samples: i.e., undertaking batch analysis for implementa-
tion of quality assurance criteria and for deriving accepted
De populations, and then manually cross-checking the OSL
properties of the rejected and accepted grain populations to
ensure that sample-specific luminescence properties are fully
understood by the user.

5. Conclusions
We present several general R functions to flexibly anal-

yse SAR data and determine SAR and SGC De in a batch
model under the framework of the ‘numOSL’ package. The
intended use of these functions is to enable the user to rapidly
and flexibly perform De analysis for a large number of SAR
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data sets. We have provided practical workflows, including
data import (selection), signal analysis, SAR De determina-
tion, application of rejection criteria, growth curve selection,
LS-normalisation, and SGC De calculation, using simple R
code templates. We demonstrate that a combination of the
small number of R functions can be used to perform SAR and
SGC De analysis in a flexible and efficient manner. These
functions are totally self-contained and do not depend on any
external R packages. Users are encouraged to combine our
program with other software packages (e.g., Analyst, R pack-
age ‘Luminescence’, etc.) for their specific SAR (SGC)
application requirements.
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