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Abstract
In the past 20 years optically stimulated lumi-
nescence (OSL) dating has advanced as a well-
established geochronometer for dating Quater-
nary sediments. Currently, there are power-
ful calculation platforms for specific calcula-
tions, such as the R package ‘Luminescence’
and the web-based dose rate calculator DRAC.
However, the community lacks a self-contained
computational synthesis that can process equiv-
alent dose and dose-rate calculations to avoid
unnecessary data exchange among multiple-
platforms that may inadvertently propagate er-
rors. Thus, we have developed a unified cal-
culation program that maintains, archives and
synthesizes basic OSL data, applies appropri-
ate statistical models, and dose rate parameters
in an updatable platform, to render statistically
significant OSL ages. In this paper, the Lu-
minescence Dose and Age Calculator (LDAC)
written in Microsoft Visual Basic for Applica-
tion is presented that can compute final equiv-
alent dose values, the environmental dose rate,
and render a final burial OSL age. LDAC incor-
porates statistical parameters, visual presenta-
tions of the equivalent dose distribution, applies
well-developed statistical age models, and uses
up-to-date dose rate parameters into a compu-
tational system using fifteen linked functional
routines. Most notably, a Markov chain Monte
Carlo slice sampling method was employed to
estimate the parameters of the minimum and
maximum age models. Also, the statistical ba-
sis for error propagation of dose rate and final

age was improved. The program is designed to
be user-friendly with operations and data en-
try conveniently executed through a graphical
user interface. The operations and calculations
are presented with transparency and flexibil-
ity, allowing for modification of given values,
constants, and algorithms. This computational
platform is easily loaded on to a PC and can
be used in a Windows environment equipped
with Microsoft Excel 2010 or later. The lat-
est version of LDAC can be downloaded along
with a user manual at https://github.com/
Peng-Liang/LDAC.
Keywords: OSL dating; equivalent dose; statis-
tical age models; dose rate; LDAC; Microsoft
VBA

1. Introduction
An accurate and precise chronology for sedimentary pro-

cesses and the enclosure of associated fossils or artifacts is a
cornerstone of the geosciences. Optically Stimulated Lumi-
nescence (OSL) dating since 1985 has evolved significantly
as an accurate dating technique, providing improved chrono-
logic control for the past 200 ka (Huntley et al., 1985; Win-
tle, 2008; Wintle & Adamiec, 2017). This geochronome-
ter, based on the principles of radiation dosimetry, measures
the burial time since mineral grains, such as quartz and K-
feldspar, were last exposed to sunlight (Aitken 1998, p. 6–
36; Murray & Wintle 2000; Murray & Wintle 2003; Wintle
& Murray 2006; Preusser et al. 2009). An important value
in OSL dating is the equivalent dose (De), which is the esti-
mate of the ionizing radiation dose received during the burial
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period (in Grays; Gy) after solar resetting (Aitken 1998, p.
6–36). An OSL age is calculated by division of the De by the
estimated dose rate (Dr), which is an evaluation of the expo-
sure rate to ionizing radiation (mGy/yr) from the surrounding
sediments and cosmic/galactic sources (Aitken 1998, p. 6–
11). OSL dating has advanced significantly in the past thirty
years with the advent of single aliquot and grain regenera-
tion (SAR) methods (e.g., Wintle & Murray 2006; Wintle &
Adamiec 2017). This geochronometer is most robust when
dating sediments that have been well and uniformly solar
reset, such as mineral grains from aeolian and littoral envi-
ronments (e.g., Lang et al. 2003; Forman et al. 2014; Yang
et al. 2015; Yang et al. 2019; Lancaster et al. 2016; Tamura
et al. 2019). The De distribution for well solar reset grains
often shows a unimodal distribution, with a low overdisper-
sion value (< 0.20) (Forman et al., 2014). However, the De
can vary substantially for separate aliquots or grains from
fluvial and lacustrine environments, reflecting partial solar
resetting or incorporation of older grains, mostly exposed in
turbid water environments (e.g., Aitken 1998, p. 143–175;
Arnold et al. 2007; Cunningham & Wallinga 2012; Hesse
et al. 2018). Thus, the De distribution of variably solar reset
grains often exhibits a multi-modal distribution with a high
overdispersion (> 0.30). Commonly, the youngest De popu-
lation for grains is the closest to the actual age for partially
solar-reset sediments (e.g., Cunningham & Wallinga 2012;
Hesse et al. 2018).

Fortunately, there are several statistical models such as the
central, minimum, maximum, and finite mixture age mod-
els that have been developed to deconvolute De populations
that reflect the time since sediment deposition and shield-
ing from further sunlight exposure (Galbraith & Green, 1990;
Galbraith et al., 1999; Galbraith & Roberts, 2012). In turn,
the environmental Dr is a required assessment for dating,
which is defined by ten separate variables reflecting com-
plex, ionizing-radiation conditions during the burial period
(Aitken 1998, p. 37–57; Durcan et al. 2015). Thus, there is a
need for a calculation platform that synthesizes De data, in-
corporates appropriate statistical models, and Dr parameters
in a self-consistent manner, which can be easily updated with
future refinements in constants, statistical analyses, and data
visualization. Several well-appointed calculation programs
have been developed for specific De and Dr computations
that serve the luminescence dating community well (e.g.,
Grün 2009; Kreutzer et al. 2012; Peng et al. 2013; Durcan
et al. 2015; Burow et al. 2016). For example, a highly flexible
R script-based computational package, `Luminescence'

(Kreutzer et al., 2012, 2018), was designed to further ana-
lyze the luminescence data from SAR measurements. This
package was integrated into the latest version of the Ana-
lyst luminescence software (v4.57), which supports model-
ing functions and graphing routines (Duller, 2018). How-
ever, the R`Luminescence' package lacks a visual inter-
face with user interactions through the R programming en-
vironment. As a partial remedy for this platform a graph-
ical user interface (GUI) does exist through �RLumShiny�

(Burow et al., 2016), but the graphic-presentation function-

ality is limited. Desktop- or web-based programs, such as
the AGE (Grün, 2009) and DRAC (Durcan et al., 2015), have
been developed to address the challenges of dose rate calcu-
lations. Nevertheless, one must exchange data among mul-
tiple programs to obtain the final age, which increases the
risk of involuntary errors and inconsistent error analyses. To
our knowledge, the luminescence dating community lacks an
integrated and interfaced calculation platform to determine
OSL ages such as software Calib (Stuiver et al., 2019) or
OxCal (Ramsey, 1995, 2017) for radiocarbon dating, ISO-
PLOT (Ludwig, 1988) or IsoplotR (Vermeesch, 2018) for
U-Pb dating, and CRONUS (Balco et al., 2008) or iceTEA
(Jones et al., 2019) for cosmogenic nuclide dating.

We present an integrated OSL age calculation program
with a well-defined statistical foundation, based on the Mi-
crosoft Visual Basic for Application (VBA), referred to as
‘Luminescence Dose and Age Calculator (LDAC)’, to ful-
fill a computational need for OSL geochronology. The
program is a user-friendly OSL-age-computational system
based on previously presented statistical analyses, mathemat-
ical relations and other formulations (Galbraith, 1988, 1990,
2003; Bailey & Arnold, 2006; Arnold et al., 2009; Grün,
2009; Duller, 2007, 2015; Durcan et al., 2015). The Mi-
crosoft Excel platform was chosen to provide the broadest
access and accountability for code, constants, and calcula-
tions, though certain Monte Carlo based calculations have
lag times of ∼ 1 minute. LDAC offers a computational plat-
form to determine OSL age estimates with metrics to assess
the statistical robustness of equivalent dose data (Bailey &
Arnold, 2006; Arnold & Roberts, 2009), the applicability
of statistical age models (Galbraith & Roberts, 2012) and
with up-to-date dose rate parameters (Adamiec & Aitken,
1998; Guérin et al., 2011; Liritzis et al., 2013; Durcan et al.,
2015). Included in this platform are revised computational
pathways for determining overdispersion values on small De
populations (Galbraith & Roberts, 2012), a new slice sam-
pling method to deconvolute subpopulations using the mini-
mum and maximum models (Neal, 2003), and Monte Carlo
based-calculations for the final OSL age estimate. This pro-
gram can be easily updated to improve dose rate determi-
nations, OSL age calculations, enhanced visualizations, and
as a platform to encourage inter-laboratory OSL age com-
parisons. The current version (LDAC v1.0) of this compu-
tational scheme with the code is open access to the commu-
nity at https://github.com/Peng-Liang/LDAC, where a
video highlights the capabilities of this computation pack-
age. We welcome use by the community and comments to
improve this nascent computational platform.

2. Architecture of LDAC
LDAC is an Excel VBA-based package to facilitate the

assemblage of luminescence age information and associ-
ated calculations. This software is applicable for individ-
ual equivalent dose measurements using the SAR protocol
(e.g., Wintle & Murray 2006). This computational system
has two major components for De and Dr calculation (Fig. 1),
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Figure 1. Computational pathways for the Luminescence Dose and Age Calculator (LDAC). The rectangular boxes marked with numbers
represent worksheets in LDAC, while the oval frames represent attribute information. The software has two components which are the dose
rate calculation system (green) and equivalent dose calculation system (yellow).

based on the following simplified luminescence age equation
(Aitken 1998, p. 6–11):

Age(yr) =
De (Gy)

Dr

(
Gy
yr

) , (1)

where the De is the burial dose accumulated in grains; the Dr
is the dose rate that comes from exposure to ionizing radia-
tion from α, β and γ particles in the grain, surrounding sed-
iments, and from cosmic rays (Aitken 1998, p. 37–49). This
suite of computations is based on fourteen-linked calculation
routines for applying statistical models to determine De val-
ues and render a corresponding luminescence age (Fig. 1).

The first step to use this computational package is
the entry of individual grain or aliquot De data, elemen-
tal, environmental and contextual information to calculate
sample Drwhich is organized in the “Summary” worksheet
(Fig. 1; Supplement A). Subsequent calculations of a fi-
nal De, Dr and an OSL age are presented in succeeding
workspaces with these calculations based on data entry on
to the “Summary” page (Fig. 1; Supplement A). This “Sum-
mary” page allows users to input pertinent information for
a sample, such as lab number, field number, sediment type,
sample locality and analyst. In turn, there is computation

space for Dr information, such as the U, Th, K or K2O,
Rb, water content (mass of water/mass of dry sediment), or-
ganic content, grain size, geographical coordinates, eleva-
tion, depth, overburden density and a sub-routine to calcu-
late a cosmic dose contribution. Lastly, there are data entry
spaces for parameters about the laboratory protocols, includ-
ing preheat, cut heat, and annealing temperatures, test dose,
and irradiation dose cycles (Fig. 1; Supplement A), which
are used for keeping a record.

The “Summary” page also has flexible space for the en-
try of first tier of luminescence data directly imported from
the ‘Analyst’ platform (Duller, 2007, 2018). This data in-
cludes calculated individual De values for each aliquot or
grain (for up to 5000 De values) and related parameters such
as recycling ratio, percent recuperation (Murray & Wintle,
2000; Wintle & Murray, 2006) with associated errors. Other
pertinent diagnostic metrics such as the fast ratio (Durcan &
Duller, 2011) and the infrared depletion ratio (Duller, 2003)
can also be input. Individual De values for single aliquots or
grains that fail to meet the data quality assessment metrics
(cf. Murray & Wintle 2000; Duller 2003; Durcan & Duller
2011) are marked in a reddish-pink with a toggle choice
(‘Reject’) and are removed from subsequent calculations but
stored as part of total aliquots. Designating the ‘Transfer’
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button transmits the accepted De values with standard errors
for aliquots/grains into the “De Calculation” page to visual-
ize the De data and apply statistical age models.

The “De Calculation” page includes statistical parame-
ters, graphical presentation (see section 3), and parametric
statistical models (see section 4) such as common, central,
minimum, maximum, and finite mixture age models (Gal-
braith & Green 1990; Galbraith et al. 1999; Galbraith &
Roberts 2012; Fig. 1). Normal and log-normal distributions
can be applied to all age models, except the maximum age
models, which were only designed for log-transformed data
(Olley et al., 2006; Galbraith & Roberts, 2012). LDAC of-
fers two flexible approaches to estimate the uncertainty of
overdispersion for the central age model. The first and de-
fault option utilizes the formula provided by Galbraith et al.
(1999), but this equation is often inappropriate for smaller
sample sizes (e.g., < 30 aliquots) (Galbraith & Roberts,
2012). An alternative calculation is applied by computing the
95% compatibility interval (CI) of the profile log-likelihood
function (Galbraith & Roberts, 2012), when the ‘Plot-Lik’
checkbox is chosen (see section 4.1). Application of min-
imum or maximum age models are a separate calculation
on a succeeding worksheet entitled “MAM-MAX” (Work-
sheet 3, Fig. 1). Moreover, two types of diagrams, radial plot
(Galbraith, 1988) and kernel density estimate plot (Galbraith
& Roberts, 2012), can be created in the “De Calculation”
page for data visualization (Fig. 2). The appearance of these
graphical displays can be adjusted by users with inputs for
decimal places, dot size, dot and curve color, below the plot
area in the worksheet “De Calculation”, and the dose unit
can be chosen either seconds or Grays (worksheet 2 in Fig. 1;
Supplement A). Exported figures include sample information
such as lab number, the number of aliquots/grains, overdis-
persion, age model used and final De and errors (Fig. 2). Fi-
nally, the chosen De (tick box) and the designated calculation
models will be automatically transferred to the “Summary”
page to determine the final OSL age.

Calculation of the cosmic and total environment dose rate,
final OSL age, and associated uncertainties (1σ) is actuated
by clicking the ‘Find Age’ button in the “Summary” page
(see section 5). The default option for calculating dose rate
is modified from the DRAC (v1.2), and the associated uncer-
tainties are propagated in quadrature (Durcan et al., 2015).
Propagation of uncertainties through Monte Carlo simula-
tions is also available for the final age calculation in LDAC
(see section 5.4). Highlighted dose and age calculation re-
sults of the target sample can be compiled as a *.pdf ver-
sion report via the ‘Export Report’ button (Fig. 1). This
report includes sample identification, dose rate, equivalent
dose, sequence information, error analyses, and an associated
data-based summary table. Additionally, the relevant graph-
ical presentations will be included in this report if available
(worksheet 14 in Fig. 1; Supplement B).

There are additional functionalities in the right-hand cor-
ner actuated by the ‘Show info’, the ‘Calibration’ and the
‘Import’ tabs. The ‘Show info’ allows users to display the
underlying basis of the dose-rate calculation and relevant pa-

rameters (worksheets 4 to 14, Fig. 1). The ‘Calibration’ but-
ton is used to update the strength of radiation source of the
OSL readers in the user’s laboratory to compensate for decay
changes in source strength. The ‘Import’ button can transfer
data between different versions of LDAC. To familiarize the
user with this platform, an example data set is provided after
clicking the ‘Load Example’ button on the “Summary” page.

3. Statistical parameters and graphical presen-
tation of observed De values

3.1. Statistical parameters
Statistical parameters may be useful to characterize the

De distributions for a sample based De values from indi-
vidual aliquots or grains and may assist in deciphering the
depositional environment (Bailey & Arnold, 2006; Arnold
& Roberts, 2009). LDAC provides two widely used de-
scriptive statistical parameters, including weighted skewness
(Bailey & Arnold, 2006; Arnold & Roberts, 2009) and the
chi-square (χ2) homogeneity test (Galbraith, 2003; Galbraith
& Roberts, 2012), to score the original observed data distri-
bution and help to decide which age model is statistically
appropriate.

The weighted skewness (c) is calculated as (Bailey &
Arnold, 2006):

c =
n

∑
i=1

{
wci

(
di−δ

SDe

)3
}

1
∑

n
i=1 wci

(2)

where wci =
∣∣∣ 1

σi/di

∣∣∣, di and σi are the observed De and cor-
responding standard error for an aliquot or a grain i, respec-
tively; n and sDe are the total number and standard deviation
of all valid observed De values. The δ here is the weighted
mean of observed De values (Arnold & Roberts, 2009) or
the central dose value obtained from ‘un-logged’ central age
model (see section 4.1). Note that Eq. 2 is only suitable for
original numeric values. When log-transformation is used in
data analyses (tick ‘Log-Normal’), the following equation is
applied (Arnold & Roberts, 2009):

c =
n

∑
i=1

{
wci

(
ln(di)−δ

SlnDe

)3
}

1
∑

n
i=1 wci

(3)

where slnDe is the standard deviation of the natural logarithm
De values, δ is the central value obtained from the usual (log-
transformed) common or central age model (see section 4.1).

LDAC employs the standard error of skewness σc, an ap-
proach proposed by Bailey & Arnold (2006), to test the rela-
tive statistical significance of the skewness scores calculated
by Eq. 2 or Eq. 3. The σc is approximated as (Tabachnick &
Fidell, 1996):

σc =
√

6/n. (4)

The modeling investigations of single grains De indicate that
± 2σc can be regarded as the limits for statistically signifi-
cance of the weighted skewness c (Bailey & Arnold, 2006).
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Figure 2. Example figures on “De Calculation” worksheet of radial plots (a, b) and graphs of kernel density estimate (KDE) (c, d) for sample
BG4285. Figures (a) and (c) show BG4285 data with normal scale and figures (b) and (d) display the same data with log-transformed scale.
The orange and blue colors in (c) and (d) mark the KDE curve with different bandwidth “h”, revealing potentially different equivalent dose
peaks. The grey dots and bars show the empirical cumulative distribution for equivalent dose values and ± 1 standard error.

However, a critical c value of± 1σc is a more meaningful in-
dicator of statistical significance for multi-grain data because
of the ‘averaging out’ effects (Arnold et al., 2007; Arnold &
Roberts, 2009). Although LDAC uses ± 1σc as a critical
skewness value to categorize De or log De distributions as
‘positive’ (c > σc), ‘negative’ (c < −σc) or ‘not significant’
(−σc ≤ c ≤ σc), the original c and σc values are also pro-
vided in the “De Calculation” page (Supplement A).

LDAC utilizes the ‘p-value’ of the χ2 distribution to pro-
vide a visual assessment of homogeneity of independent De
estimates (Galbraith, 2003). This homogeneity test supposes
that there are n independent observed values di±σi, and each
di is drawn from a normal distribution N(µi, σi). The null
hypothesis is that all individual values of µi are equal to an
unknown common value µ . In this case, the maximum like-
lihood estimates of µ̂ under the null hypothesis is:

µ̂ =
∑

n
i=1 widi

∑
n
i=1 wi

, (5)

where wi =
1

σi2
, and the homogeneity test statistic (G) is de-

fined by:

G =
n

∑
i=1

wi(di− µ̂)2. (6)

Then, a p-value, the probability that a random value drawn
from a χ2 distribution with n− 1 degrees of freedom is > G
(Galbraith, 2003; Galbraith & Roberts, 2012), is calculated
according to the G statistic and the degrees of freedom. The
smaller the p-value for any given number of observed values,
the stronger the evidence to reject the null hypothesis (Gal-
braith & Roberts, 2012). However, if the p-value is greater
than the conventional critical value 0.05 (a small G statistic),
then there is insufficient evidence for overdispersion, rather
than no overdispersion between observed values (Galbraith,
2003; Galbraith & Roberts, 2012). This homogeneity test
can also be applied to evaluate the agreement of paired-age
or -dose estimates (Galbraith & Roberts, 2012).

3.2. Graphical presentation
Objective statistical analyses and visual assessments for

De distributions are critical to evaluate the most appropriate
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age model (Galbraith, 1988, 2005, 2010). A useful statistical
representation of De values is with a radial plot, that displays
De values against precision (Galbraith, 1988, 2005) and is
used widely by the trapped-charge dating community (e.g.,
Bøtter-Jensen et al. 2003, p. 296–310; Arnold & Roberts
2009; Galbraith & Roberts 2012; Forman 2015; Yang et al.
2015; Guérin et al. 2017). Another useful graphical presenta-
tion is the kernel density estimate plot (Sircombe, 2004; Gal-
braith, 2010; Galbraith & Roberts, 2012; Vermeesch, 2012,
2018; Ramsey, 2017), which is a graphic representation of
continuous values that approximates the distribution as a
probability density function (Galbraith, 2010).

The radial plot reflects the data distribution, with each
value registered independently, where the y-axis is a stan-
dardized estimate and the x-axis represents the precision of
values (Galbraith, 1988). This plot supposes that there are
observed values di±σi for aliquot or grain i = 1, 2, . . . , n.
The coordinate for each point (xi,yi) is calculated by:

xi =
1
σi

and yi =
(di−d0)

σi
, (7)

where d0 is a convenient reference value (Galbraith &
Roberts, 2012). In LDAC, d0 is the value calculated based
on un-logged De values by the central age model (CAM-ul)
(see section 4.1) and the y scale is truncated at ± 2 standard-
ized estimation (Fig. 2a), which can be used as an aid to
evaluate the agreement between any individual value and a
reference value (Galbraith & Roberts, 2012). The horizontal
line y = 0 corresponds to di = d0; the ratio yi/xi is the slope
of the line from the origin point (0, 0) to the target point
(xi,yi) , which is the difference between an observed value
di and reference value d0 (Fig. 2a). The scale of the slope,
the z-axis, is displayed as an arc of a circle (Galbraith, 1988,
1990) to yield the radial nature of the plot. When the data is
log-transformed, for the observed values di with associated
standard error σi, the Eq (7) is modified to:

xi =
1

σi/di
and yi =

lndi− lnd0

σi/di
, (8)

where d0 is the value calculated by logarithmic-based central
age model (CAM) (see section 4.1). In this case, the preci-
sion in x-axis represents the reciprocal of relative standard
error and z-axis is in a natural logarithm scale (Fig. 2b).

The kernel density estimate (KDE) for a set of observed
values d1, d2, . . . , dn at x is calculated based on the Gaussian
kernel as follows:

KDE(x) =
1
n

n

∑
i=1

[
1

h
√

2π
exp

(
−1

2

(
x−di

h

)2
)]

, (9)

where h is known as smoothing parameter ‘bandwidth’ that
plays an important role in KDE (Silverman 1998, p. 43–59).
As h varies there will be variable resolution of the density
curve depicting varying peaks of the data distribution (Silver-
man 1998, p. 43–59; Galbraith & Roberts 2012; Vermeesch
2012; Fig. 2c, d). The default method for KDE representa-
tion is ‘adaptive bandwidth’ which varies with the density of

the data (Botev et al. 2010; Supplement C). This method uses
a narrower bandwidth near the dense data distribution and
a wider bandwidth near the sparse data distribution (Botev
et al., 2010; Vermeesch, 2018). Thus, the resolution of the
KDE curve is optimized by the data availability (Vermeesch,
2018). A constant bandwidth for KDE derived from Silver-
man (1998, p. 45–49) and user-defined values (Supplement
C) are also available. Moreover, a probability density func-
tion method, where the bandwidth h in Eq. 9 is replaced by
the analytical uncertainties σi, is provided when the band-
width method ‘PDF plot’ is chosen (Supplement C). A con-
tinuous KDE curve does not directly reflect the original data
distribution, so the individual De values with errors are plot-
ted on the KDE graph in rank order as an empirical distri-
bution function (Fig. 2c, d; Galbraith & Roberts 2012). Ad-
ditionally, the KDE can be calculated with log-transformed
data, when di in Eq. 9 is altered to lndi (Fig. 2d).

4. Age models for De determination
The complexity of depositional processes, environmental

microdosimetry, and individual mineral grains response to
optical stimulation may result in De values measured from
separate aliquots or grains exhibiting significant scatter (Ja-
cobs & Roberts, 2007; Arnold & Roberts, 2009; Galbraith &
Roberts, 2012; Cunningham & Wallinga, 2012; Guérin et al.,
2017). Thus, it is usually inappropriate to analyze such De
data by assuming a simple Gaussian distribution, by using
the weighted average method (Taylor 1997, p. 173–179),
known as the common age model (Supplement C; Galbraith
2005, p. 47–50; Galbraith & Roberts 2012). Fortunately,
there exists other statistical models that are more appropri-
ate metrics for non-Gaussian data distributions. This section
focuses on presenting the logic and mathematical bases for
the application of the much used central, minimum and max-
imum age models to De data; the statistical principles of the
common and finite mixture age models are discussed in the
supplementary information (Supplement C).

4.1. Central age model
The central age model (CAM) is commonly adopted to

determine a final De value for well solar reset sediments,
such as aeolian sand (e.g., Forman et al. 2014; Yang et al.
2015; Hesse et al. 2018; Tamura et al. 2019). The CAM as-
sumes that De values are not consistent even if the measure-
ment errors σwi are considered, and the natural logarithm of
true De (ln De) values are drawn from a normal distribution
with central dose δ and standard deviation σ (Galbraith et al.,
1999; Galbraith & Roberts, 2012). The standard deviation σ ,
also known as overdispersion, denotes an additional disper-
sion after accounting for within-aliquot/grain measurement
errors (Galbraith & Roberts, 2012). The central dose δ and
overdispersion σ are estimated with simultaneous evaluation
of the following three equations (Galbraith et al., 1999):

wi =
1

σ2 +σwi
2 (10)
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Figure 3. Examples of profile log-likelihood function for the overdispersion in the central age model. (a) Illustration of the algorithm for
calculating the standard error of overdispersion based on profile log-likelihood function (BG4285). The limits of 95% comparability interval
were calculated by searching the values of σ to fulfill Lσ −Lmax = 1.92 on this profile log-likelihood function. Sequential the calculation
entails, first, give an initial step (brown arrow) to cross over the line Lσ −Lmax = 1.92 and find the brown point 1©. Then, give a finer step
(green arrow) to go back and cross over the line 1.92 again to find the green point 2©. Repeat this calculation until a fine limit 5©, under the
tolerance (0.01%), was reached. The calculation of lower limit is same. (b) An example of output shows the profile log-likelihood function for
overdispersion parameter σ in the un-logged central age model (CAM-ul); in this case, the overdispersion and associated error are expressed
in grays (Gy).

δ =
∑

n
i=1 widi

∑
n
i=1 wi

(11)

n

∑
i=1

wi
2 (di−δ )2 =

n

∑
i=1

wi (12)

where di and σwi are the natural logarithm of observed De
value and relative standard error for aliquot or grain i, respec-
tively. When overdispersion σ is zero, the CAM is math-
ematically equivalent to the common age model (Galbraith
& Roberts, 2012). These equations are solved by starting
with an initial σ = 0.5 (overdispersion is 50%), and calcu-
late wi for each i based on Eq. 10, and then calculate δ based
on Eq. 11; this calculation iterates and updates sequentially

with an σ = σ(
∑

n
i=1 wi

2(di−δ )2

∑
n
i=1 wi

). Once the parameters σ and

δ satisfy Eq. 12 with ∑
n
i=1 wi

2(di−δ )2

∑
n
i=1 wi

= 1 (assuming wi 6= 0),

appropriate estimates, σ̂ and δ̂ , are derived.
LDAC provides two methods to estimate the standard er-

ror of the overdispersion. For large sample populations, the
standard error (se) could be approximately (Galbraith et al.,
1999):

se (δ ) =

√
1

∑
n
i=1 wi

(13)

se(σ) =

√
1

2σ2 ∑
n
i=1 wi2

(14)

The above se(σ) can be unreliable for smaller sample popu-
lations (e.g., < 30) (Galbraith & Roberts, 2012). In this case,

an alternative calculation is executed using the ‘profile log-
likelihood function’ to provide an assessment of the standard
error of the overdispersion. This method constructs a profile
log-likelihood function of Lσ against σ (Galbraith & Roberts,
2012), where

Lσ =
1
2

n

∑
i=1

{
ln wi−wi (di−δ )2

}
. (15)

When σ equals the maximum likelihood estimated overdis-
persion σ̂ , the Lσ has its maximum value Lmax and it de-
creases as σ departs from σ̂ . Based on the large-sample
maximum likelihood theory and the likelihood-ratio test, ap-
proximate boundaries of 95% CI are values of σ for which
Lσ is within 1.92 of Lmax (Cox 2006, p. 96–106; Gal-
braith & Roberts 2012). These coarse boundaries are eval-
uated by searching for threshold values of σ for which
(Lσ −Lmax)≤ -1.92 from σ̂ to either direction with an initial
step S0 (e.g., S0 = 5% of σ̂ ) in the profile log-likelihood func-
tion (Fig. 3a). This calculation is iterated sequentially with
10% of the previous step as a new value (e.g., 10% of S0) to
resolve finer compatibility intervals (Fig. 3a). A symmetric
standard error of σ̂ is calculated by dividing the length of this
95% CI by 3.92 when the distribution of σ is assumed to be
Gaussian (Cox 2006, p. 64–93; Galbraith & Roberts 2012).

A challenge for luminescence dating is that the usual
(natural logarithm transformed) CAM may be unsuitable
for young sediments (e.g., < 350 a) because of low signal
to noise ratio and the preponderance of negative De values
(Arnold et al., 2009; Galbraith & Roberts, 2012). Conse-
quently, an un-logged central age model (CAM-ul) was de-
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signed for samples which contains grains with near-zero or
negative De values (Arnold et al., 2009). In this case, the di
is the original De values for each aliquot or grain i, and the
σwi is the absolute rather than relative standard error. The
absolute overdispersion and 95% CI is calculated and shown
graphically as a profile log-likelihood function (Fig. 3b). If
the overdispersion σ̂ for CAM-ul equals 0, the estimate δ

given by Eq. 11 is mathematically equivalent to ‘inverse vari-
ance weighted mean’ of the observed De values (Taylor 1997,
p. 173–179; Galbraith & Roberts 2012).

4.2. Minimum age models
4.2.1 Statistical principle of minimum ages models

The minimum age model (MAM) is designed for sedi-
ments that contain a mixture of grains with different solar-
resetting histories, with inherent varying luminescence emis-
sions (Galbraith et al., 1999; Galbraith & Roberts, 2012).
Though mineral grains in a sedimentary unit may have an
equivalent burial time, the component grains yield varying
equivalent doses, indicating grain populations were not fully
solar reset prior to burial (Galbraith et al., 1999; Preusser
et al., 2009). These partially bleached sediments are typically
characterized by high overdispersion (> 0.25) of De distribu-
tions (Rodnight, 2008; Galbraith & Roberts, 2012). In such
cases, the MAM may be most suitable to determine the De
for the burial period. The MAM assumes that the burial lnDe
values are drawn from a truncated normal distribution, where
γ denotes the lower truncation point and corresponds to the
average burial lnDe of the well solar-reset grains. The pro-
portion of well-bleached grains is denoted by p; the partially
bleached grains have larger doses which are drawn from a
truncated normal distribution with parameters µ and σ (Gal-
braith et al., 1999; Galbraith & Roberts, 2012). Note that
if the ln De distribution were not truncated, it would have a
mean µ and a standard deviation σ as δ and σ for the central
age model (Galbraith et al., 1999).

For the MAM, LDAC calculates the probability density
function fi for a ln De value di based on (Galbraith et al.,
1999; Galbraith & Roberts, 2012):

si
2 = σwi

2 +σb
2 (16)

µ∗ =

µ

σ2 +
di
si2

1
σ2 +

1
si2

(17)

σ∗ =
1√

1
σ2 +

1
si2

(18)

f1i =
1√

2πsi2
exp

(
− (di− γ)2

2si2

)
(19)

f2i =
1√

2π (σ2 + si2)

1−Φ

(
γ−µ∗

σ∗

)
1−Φ

(
γ−µ

σ

) exp

(
− (di−µ)2

2(σ2 + si2)

)
(20)

fi = p f1i +(1− p) f2i (21)

where di and σwi are the same as the parameters in Eqs. 11
and 12; Φ(•) is the cumulative distribution function of
N(0, 1); f1i and f2i are the contribution from the well-
bleached component and partially bleached component, re-
spectively. Another important parameter in this age model is
σb in Eq. 16, which is a likely overdispersion for the expected
population of well-bleached grains, such as between-grain
variation in a heterogenous dose environment (‘hot grains’)
(Jacobs & Roberts, 2007; Guérin et al., 2015). This σb is in-
dependent of within-grain or aliquot measurement error and
inhomogeneous solar resetting (Galbraith et al., 2005; Cun-
ningham & Wallinga, 2012). An appropriate σb is difficult
to measure for mixed grain populations with variable De but
can be assessed from well solar reset mineral grains from the
same source (Galbraith & Roberts, 2012). Overestimating
or underestimating the σb will lead to corresponding older
and younger age estimates. In LDAC, we use a default σb
of 0.11 ± 0.04 (11 ± 4%) for multi-grain data consistent
with the value recommended by Cunningham & Wallinga
(2012). However, it is advised to evaluate σb for each sam-
ple dated (Galbraith et al., 2005; Cunningham & Wallinga,
2012). Thus, users can input other σb values in the “MAM-
MAX” worksheet (Supplement A). Hence, the four unknown
parameters p, γ, µ and σ in Eqs. 16–21 can be estimated
when the log-likelihood L is a maximum, where

L(di, σwi |p, γ, µ, σ) =
n

∑
i=1

ln fi. (22)

Some data sets with a small number of valid values or less
dispersed distributions, may be uncalculatable with the above
four-parameters model (MAM-4). Thus, it may be suitable
to apply a simpler three parameters model in which µ = γ

(MAM-3) (Galbraith et al., 1999). As with the CAM, this
natural logarithm-transformed MAM may be unsuitable for
sediments that have a De < 0.50 Gy, with significant zero and
negative values which are consistent with zero dose within 2
standard errors (Arnold et al., 2009; Galbraith & Roberts,
2012). In this case, the un-logged minimum age model
(MAM-ul) is used, which supposes that the actual De instead
of lnDe values are drawn from a truncated normal distribu-
tion, where γ denotes the lower truncation point and cor-
responds to the average burial De of well-bleached grains
(Arnold et al., 2009). Thus, the parameters di and σwi in
Eqs. 16–22 are referred to the actual dose and absolute stan-
dard error, rather than log-transformed and relative standard
error scale. Likewise, the σb of MAM-ul in Eq. 16 is the
absolute overdispersion (Gy) instead of the relative overdis-
persion (%) of well-bleached grains.

4.2.2 Markov chain Monte Carlo slice sampling for pa-
rameters estimation

There is need for computational tools to estimate the four
parameters p, γ, µ and σ for the MAM (Eqs. 16–22). Of-
ten these values and associated standard errors are computed
numerically through an optimization program such as For-
tran program ‘minim’ (Galbraith et al., 1999) or maximum
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Figure 4. Procedures for estimating the parameters for the minimum age model (Galbraith & Roberts, 2012) using Markov chain Monte
Carlo (MCMC) slice sampling method (Neal, 2003). (a) Processes for defining the “slice” (bold line), positioning an initial interval I0, and
expanding the I0 to I = (L, R) in incremental steps w to include the slices as more as possible. (b) Initiate a calculation at point x1 uniformly
from the interval I until a value is found inside the slice. Values outside the slice (e.g., the red dots “×”) are used to shrink the interval. (c)
MCMC iterations using the procedures of (a) and (b) to obtain the distribution of f(x).

likelihood estimation package `bbmle' in R (Bolker & R
Development Core Team, 2017). However, these packages
are incompatible with an Excel VBA-based computational
system. A well-adapted replacement is through ‘slice sam-
pling’ based on the Markov chain Monte Carlo (MCMC)
method (Gilks et al. 1996; Neal 2003; Brooks et al. 2011, p.
215–219; Peng et al. 2013), which was initially used by an
R package `numOSL' to solve the MAM parameters (Peng
et al., 2013). The basis of this algorithm is that any unknown
distribution can be obtained by sampling uniformly from a
region under a probability distribution curve, applying an
MCMC algorithm (Neal 2003; Vermeesch 2007; Fig. 4). The
procedures of single-variable slice sampling are outlined in
Table 1 and shown in Fig. 4 (Neal, 2003).

The advantage of the slice sampling is that it is appropri-
ate for a single-variable distribution (Neal, 2003). This com-
putation is adept at sampling a multivariate distribution such
as L(x) in Eq. 21 for x = (p,γ, µ,σ), by repeatedly updat-
ing each variable in turn (Neal, 2003). This slice sampling
method is more efficient through ‘stepping out’ and ‘shrink-
age’ procedures (Neal, 2003) than the other Markov chain
methods such as Gibbs sampling (Gelfand & Smith, 1990)
and adaptive-rejection Metropolis sampling methods (Gilks
et al., 1995; Vermeesch, 2007). In LDAC, the MCMC slice
sampling (Table 1) is used to estimate the maximum likeli-
hood parameters for the MAM, based on Eq. 21 and rotation-
ally update parameters (Table 2).

The fundamental prerequisite for applying the MCMC al-
gorithm to estimate parameters and associated uncertainties
for a distribution is that the Markov chain attains conver-
gence states (Gilks et al. 1996; Cowles & Carlin 1996; Neal
2003; Brooks et al. 2011, p. 163–174). Several diagnostic

tools can be applied to assess the steps for value convergence
(Cowles & Carlin, 1996). In LDAC, trace plot, marginal
density, and autocorrelation function (ACF) are employed to
evaluate the convergence states of a Markov chain analysis
(Fig. 5). A trace plot shows the trajectories at each MCMC it-
eration and is a straightforward graphic to assess the conver-
gence of a Markov chain (Gilks et al., 1996; Plummer et al.,
2006; Philippe et al., 2019). The Markov chain reached a sta-
ble state if the trace plot displays a random distribution with
a relatively constant mean and variance (Brooks et al. 2011,
p. 163–174; Philippe et al. 2019). In LDAC, the default num-
ber of iterations is n = 1800, which balances the convergence,
precision, and efficiency of the MAM calculations. An un-
suitable initial value affects the initial behavior of a Markov
chain within finite iterations (see Fig. 5). Thus, we use a
‘burn-in’ strategy (Gilks et al. 1996; Brooks et al. 2011, p.
19–23), which discards the first t iterations of a Markov chain
analysis, to reduce the influence of initial values and use ex-
clusively the stationary values for estimation of parameters.
Another graphical assessment method is the autocorrelation
function, which monitors the correlation between states of
the Markov chain (Brooks et al. 2011, p. 163–174). High
sampling autocorrelation may result in a biased standard er-
ror for Monte Carlo iterations (Gilks et al., 1996). LDAC
computations use a conventional ‘thinning’ method (Gilks
et al. 1996; Brooks et al. 2011, p. 163–174), with every kth
iteration stored, to reduce autocorrelation between consecu-
tive iterations. The default values for burn-in and thinning in
LDAC are 200 and 4, respectively. Consequently, the num-
ber of MCMC iterations used for final parameter estimation
is [(n− t)/k] (in LDAC, 400). Users can adjust (increase)
the default values for Monte Carlo iterations, burn-in inter-
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Table 1. The ‘stepping out’ and ‘shrinkage’ procedures for Markov chain Monte Carlo (MCMC) slice sampling method for Minimum Age
Model calculations.

Step Calculation Notes

1 Give an initial value, x0, and calculate f (x0); x0 and f (x0) in Fig. 4a

2 Draw an auxiliary value at vertical level, y ,uniformly from
(0, f (x0)), thereby defining a horizontal ‘slice’: S = {x : y < f (x)};

The bold gray lines in Fig. 4

3 Give a rough estimate, w, for the scale of S (w is estimated prior to
slice sampling and keep constant);

Fig. 4

4 Pick randomly an initial interval I0 = (L0, R0), which size equals
w, containing x0;

I0 is the green line in Fig. 4a and the
length of I0 = w

5 Expand the initial interval I0 by ‘stepping out’ procedure (Neal,
2003) until f (L) ≤ y and f (R)≤ y ; we get an interval as
I = (L, R);

The thin solid green line in Fig. 4a;

6 Draw a new point x1 uniformly from the interval I using
‘shrinkage’ method (Neal, 2003). If the f (x1)< y, reject the value,
shrink the interval I and repeat the uniform sampling within the
new interval again, until f (x1)≥ y.

The rejection points and shrinkage
procedures are illustrated in Fig. 4b.

7 Set the new point x1 as current point x0 and return to 1. The MCMC iteration is illustrated in
Fig. 4b,c

Table 2. Protocol for applying the single-variable slice sampling method outlined in Table 1 to estimate parameters from a multivariable
distribution.

Step Procedure Calculation

1 Calculate the lower and upper limits of p,γ,µ,σ ; p ∈ [0, 1]; γ ∈ [min(di) , max(di)];
µ ∈ [min(di) , max(di)]; σ ∈ [0, 10];

2 Give initial values of p,γ,µ,σ within their range; p0,γ0,µ0,σ0; both default and user-defined values
are available;

3 Calculate new points p1,γ1,µ1,σ1 using the
single-variable slice sampling method and save these
values in a matrix [ j,k] ( j represents the time of
iterations; k represents the number of parameters);

p1 = slice sampling(L(p0|γ0,µ0,σ0,di,σwi));
γ1 = slice sampling(L(γ0|p1,µ0,σ0,di,σwi));
µ1 = slice sampling(L(µ0|p1,γ1,σ0,di,σwi));
σ1 = slice sampling(L(σ0|p1,γ1,µ1,di,σwi));

4 Set p1,γ1,µ1,σ1 as new p0,γ0,µ0,σ0 and return to 2; Start Markov chains iteration j+1 until hit the limit
on iterations.

Note: slice sampling (•) is a single-variable slice sampling calculation function based on Table 1.

actions and thinning to ensure the convergence states are re-
liably reached. Finally, the central value and 95% CI of the
estimated parameters are calculated based on the arithmetic
mean, 2.5% and 97.5% quantiles from the stationary MCMC
results (Brooks et al. 2011, p. 175–197). The standard errors
of parameters are estimated by dividing the length of 95% CI
by 3.92 (Cox 2006, p. 64–93; Galbraith & Roberts 2012).

4.2.3 Validation of slice sampling MAM

A simulated data set was fabricated by mixing De data of two
disparate samples to test the veracity of the slice sampling for
resolving the youngest De population by the MAM. The first
sample is well-bleached quartz grains with an overdispersion
of 4 ± 2 % and a De (CAM) of 47.7 ± 0.7 Gy (n = 30)

(Table 3; Fig. 6a). The second sediment is poorly-bleached
and contains three significant De components, displaying a
high overdispersion (37 ± 3%) with an apparent De (CAM)
of 158.5 ± 7.1 Gy (n = 70) (Table 3; Fig. 6b). The two
simulated sediments have an average relative standard error
of 6 ± 1.5% (Fig. 6). The two data sets are combined (n =
100), and the aliquots from each sample are traced by two
different colors: red for well solar reset data set and green
for the high dispersed data (see Fig. 6c). The overdispersion
of this mixed, synthetic sample is 63 ± 5 % and the apparent
De calculated by CAM is 110.4 ± 7.0 Gy (Fig. 6c).

The slice-sampled MAM approach was tested using the
MAM-4 computations in LDAC. A total of 1800 iterations
of MCMC slice sampling were implemented. The first 200
iterations of the MCMC were discarded (‘burn-in’) and ap-
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Figure 5. An example of Markov chain Monte Carlo sampling without ‘burn-in’ and ‘thinning’ showing graphical diagnostics such as trace
plots (upper), marginal densities (middle) and evaluation of autocorrelation (ACF) (lower). There is high autocorrelation until after lag-3
analysis.

plied a data thinning routine of registering every 4th value to
avoid autocorrelation. The trace, KDE and autocorrelation
plots demonstrate stationarity of the Markov chain analysis
(Fig. 7). Finally, 400 iterations (after burn-in and thinning)
were used to estimate p, γ, µ and σ and their 95% CI (Ta-
ble 3; Fig. 7). The default initial values given by MAM-4 in
this experiment are p0 = 0.5, γ0 = 3.93 (normal scale: 50.91
Gy), µ0 = 4.7 (normal scale: 109.95 Gy) and σ = 4.87. The
σb is 0.0438 ± 0.0173 which is the overdispersion of the
well-bleached component of this synthetic sample (Fig. 6a).
The results of this experiment indicate that the slice sampling
MAM can reliably separate the lowest synthetic De associ-
ated with the well solar-reset subpopulation (Table 3).

4.3. Maximum age models
The maximum age model (MAX) was proposed for sed-

iments that are suspected to be disturbed or mixed by pro-
cesses that lead to partial or full solar resetting of grains

post deposition, such as pedogenesis or other biogenic ac-
tivities (Olley et al., 2006; Galbraith & Roberts, 2012; Ahr
et al., 2013). The MAX computation model shares the same
assumption and statistical principle with the MAM (sec-
tion 4.2.1), but the γ is defined as the upper truncation point
of the truncated log-normal distribution of true De values
(Olley et al., 2006; Galbraith & Roberts, 2012). As with
the MAM, LDAC provides three and four parameters maxi-
mum age models (MAX-3 and MAX-4, respectively) follow-
ing the method developed by Olley et al. (2006). The same
equations and parameters estimation methods as the MAM
are used, but the di in Eqs. (16-22) is changed to

di =− lnDei + ln [Max(De)] , (23)

where Dei is the observed value from single aliquot or grain
i, Max(De) is the maximum value of all observed Des. The
purpose of this conversion process is to create a ‘mirror im-
age’ of the original data distribution (Olley et al., 2006).

Table 3. The results of slice sampling for Minimum Age Model-4 (MAM-4) for the simulated sample.

Parameters Known values (± 1σ)
MAM-4 estimates (LDAC)

Asymmetric CI (95%) Standard error (± 1σ)

p 0.30 0.300+0.10
−0.08 0.300 ± 0.045

γ 47.66 ± 0.65 Gy 47.59+1.46
−1.30 Gy 47.59 ± 0.71 Gy

µ 158.49 ± 7.10 Gy 157.17+14.08
−16.37 Gy 157.17 ± 7.77 Gy

σ 0.37 ± 0.03 0.386+0.07
−0.06 0.386 ± 0.033
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Figure 6. The unmixed (a and b) and mixed (c) simulant samples used in validation for Minimum Age Model (MAM). (a) shows equivalent
dose distribution of a well solar reset component with 4 ± 2% overdispersion; (b) illustrates partially solar reset component which includes
three sub-populations and with 37 ± 3% overdispersion. (c) Distribution of the mixed sample and the MAM-4 result.

As with the MAM, the MCMC slice sampling method (sec-
tion 4.2.2) is used to estimate the upper truncation point, γ .
The σb value is vital for the accuracy of MAX, and this value
can be estimated from the associated parameters for well-
bleached equivalent grains (Olley et al., 2006).

5. Environmental dose rate (Dr) and final age
calculation

The environmental Dr of sediments that induces lumines-
cence is from α, β and γ radiations from the radiative decay
of the U and Th series, 40K, 87Rb and from cosmic-galactic
components (Aitken 1985, chapter 4). The Dr is often cal-
culated from the concentrations of radionuclides in the sur-
rounding sediments within 30 cm radius of the sampling site
based on the assumptions of an infinite matrix and secular
equilibrium in the U and Th series (Aiken, 1998, p. 37–
41; Guérin et al. 2012). The total environmental Dr for a

particular grain size includes attenuation of external and in-
ternal dose contributions for grain-size, chemical etching of
the alpha-affected outer 5 to 10 µm of grains and inferred
sediment water content during the burial period, and cosmic
dose components. The calculations for Dr in LDAC are sim-
ilar to DRAC (Durcan et al., 2015), but with modifications
discussed below.

5.1. Conversion and attenuation factors

LDAC offers three conversion factor options for dose con-
tributions from α, β and γ components, as an infinite matrix
dose, including ‘Adamiec1998’ (Adamiec & Aitken, 1998),
‘Guérin2011’ (Guérin et al., 2011) and ‘Liritzis2013’ (Lir-
itzis et al., 2013) (worksheet 6 in Fig. 1). The given con-
version factors assume secular equilibrium of U and Th de-
cay series with no Radon loss (Aitken 1985, chapter 4). The
uncertainties of the conversion factors derived from Liritzis
et al. (2013) are applied proportional to the three data sets
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Figure 7. Estimation of the parameters p, γ, σ, and µ in minimum age model-4 for the simulant sample of Fig. 6c using the Markov chain
Monte Carlo slice sampling method. The iteration times, burn-in, and thinning are 1800, 200 and 4, respectively.

following (Durcan et al., 2015). Users are required to in-
put concentrations of U, Th, Rb in ppm and K or K2O in %
in the “Summary” page. The internal radionuclide concen-
tration or dose rates and user-specified dose rates estimated
through other methods, such as beta counting (Cunningham
et al., 2018), can be input in the bottom panel of the “Sum-
mary” page and incorporated into subsequent attenuation as
an option (Supplement A).

Several attenuation factors are considered in dose rate
calculations including by grain size, from chemical etching
(e.g., HF) of grain surface, by water content and a-value for
alpha radiation (Aitken 1985, p. 252–263). Previously vet-
ted attenuation factors are used in LDAC (e.g. Durcan et al.
2015) (worksheets 7-10 in Fig. 1). The default parameters for
α and β attenuation by grain size and after chemical etching
are from Brennan et al. (1991), Guérin et al. (2012), Bell
(1980) and Brennan (2003), respectively. Alternative ear-
lier parameters can be chosen on the “Summary” page (Sup-
plement A) for β attenuation by grain size (Mejdahl, 1979;

Brennan, 2003) to facilitate Dr comparison with previously
published calculations. Grain size attenuation effects for α
and β radiation is corrected with a resolution of 1 µm and
a grain size range of 1 to 1000 µm (worksheet 7-8; Dur-
can et al. 2015). The factors and associated uncertainties
are determined for the mean value and associated standard
deviations corresponding to a grain size range (e.g., 150 –
250 µm). Similarly, the chemical etching attenuation factors
are calculated with 1 µm resolution to a removal depth of 1
to 30 µm (worksheet 9-10; Durcan et al. 2015). A γ scal-
ing factor is used to correct the contribution from inert air,
for sediments collected at depths from < 30 cm of the ground
surface (Aitken 1985, p. 289–296; Durcan et al. 2015; work-
sheet 11 in Fig. 1). These attenuated dry dose rates are ad-
justed for the water content with the attenuation factors for
α, β and γ of 1.49, 1.25 and 1.14, respectively (Aitken 1985,
p. 74–76; Grün 1994; Durcan et al. 2015).
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Figure 8. Standard cosmic dose rate (D0) at different depths be-
low surface. The black dots are the original measured data from
bryozoan limestone in the southeast of South Australia (Prescott &
Hutton, 1988). The white square data point at 1.67 hg/cm2 is from
Barbouti & Rastin (1983), and the white square at zero depth is
from Kyker & Liboff (1978). The green and orange line show fitted
curved defined by Eq. 24 and Eq. 25, respectively. The lower panel
shows the D0 residual between measured and fitted data. The con-
stants of the equation are C = 6072, B = 5.50×10-4, d = 11.6, α =
1.68, a = 75 and H = 212 (Prescott & Hutton, 1994).

5.2. Cosmic Dose Rate
The cosmic dose rate (Dc) is an integral part of the eval-

uation of the Dr, particularly for low dose sediments. The
Dc calculation in LDAC follows the protocol outlined by
Prescott & Hutton (1994). The standard cosmic dose rate
(D0) is calculated at sea level at a geomagnetic latitude of
55° for a given depth and overburden density using the fol-
lowing equations:

D0 = 0.0649x4−0.2411x3 +0.3233x2

−0.2339x+0.2937,

x < 1.67 hg/cm2,

(24)

or

D0 =
6072

[(x+11.6)1.68 +75](x+212)
e−0.00055x,

x≥ 1.67 hg/cm2,

(25)

where x (hg/cm2, equals to 100 g/cm2) is the product of sam-
pling depth below ground surface (m) and average overbur-
den bulk density of the sediments (g/cm3).

Eq. 25 from Prescott & Hutton (1994) is used to calcu-
late D0, but as pointed out by the authors, it is not valid for
depths shallower than 1.67 hg/cm2 (Aitken 1985, p. 297–
298; Fig. 8). The principal components of the cosmic dose in
the atmosphere are ionized electrons and muons, with a neg-
ligible contribution from heavier particles (Prescott & Hut-
ton, 1988). The ‘soft’ component (electrons) of cosmic rays
is attenuated with increasing depth into sediments, with pen-

etrating limited at density depth of 1.5 ~ 1.67 hg/cm2 (Bar-
bouti & Rastin, 1983; Prescott & Hutton, 1988). The remain-
ing ‘hard’ component (muons) is less readily attenuated, and
it can penetrate to considerable depths, with decreasing in-
tensity (Prescott & Hutton, 1988). The prototype of Eq. 25
is an empirical relationship between the vertical muon in-
tensity and depth (Barbouti & Rastin, 1983), and only con-
siders the ‘hard’ component of the cosmic rays. This equa-
tion (Eq. 25) excludes the ‘soft’ component (electron) of cos-
mic rays at depth shallower than 1.67 hg/cm2 (Durcan et al.,
2015; Burow, 2018). The residual between the ‘hard’ and
‘soft’ data sets for dose attenuation with depth is derived
from measured cosmic dose from a bryozoan limestone in
southeastern South Australia (orange triangles in Fig. 8). We
translated the original measurement values from Figure 1 of
Prescott and Hutton (1988) using MATLAB; the data points
< 1.67 hg/cm2 were fitted with a 4-degree polynomial func-
tion (Eq. 24; Fig. 8). LDAC adopts Eq. 24 to calculate the
D0 for depth between 0 and 1.67 hg/cm2, because it includes
both the ‘soft’ and ‘hard’ components in evaluating the cos-
mic dose rate, which is an accurate assessment.

The D0 is then corrected by F, J and H values based on
the geomagnetic latitude and altitude for the dated sediment
(Prescott & Stephan, 1982; Durcan et al., 2015). The effect
of known variations of the geomagnetic field is corrected for
dose rate estimates for the late Pleistocene (Prescott & Hut-
ton, 1994). Users can choose an estimated age range (0 – 5,
5 – 10, 10 – 15, 20 – 35, 35 – 50, 50 – 80 and > 80 ka) from the
‘Age Estimate’ tab (Fig. 9a) in the “Summary” worksheet.
This value, together with altitude and the geomagnetic lati-
tude converted from geographical coordinate, are applied to
determine the geomagnetic field fluctuation factor ( fg) and
altitude factor ( fh) (Prescott & Hutton 1994; Fig. 9). Conse-
quently, the final equation for cosmic dose rate is:

Dc = D0 · (F + J · e(h/1000)/H) · fh · ( fg−1) (26)

where F, J and H are the correction parameters of altitude and
geomagnetic latitude (Prescott & Hutton, 1994; Durcan et al.,
2015); h is the altitude of the sampling site (in m a.s.l.); fg
is the correction factors for cosmic ray flux change resulting
from geomagnetic fields variations (Fig. 9a); and fh is the
factor for adjusting fg for altitude (Fig. 9b). LDAC assigns
an uncertainty of ± 10% for the calculated Dc (Prescott &
Hutton, 1994). User-defined cosmic dose rate can also be
input in the “Summary” page, if necessary.

The overburden density influences the accuracy of Dc
calculation. LDAC allows users to input an estimated
average bulk density different from the default value of
1.6 ± 0.1 g/cm3, which is based on the investigation of soil
dry bulk density, such as loess (1.1 – 1.8 g/cm3) and aeolian
sand (1.3 – 1.8 g/cm3) with adjustments for field moisture
content (Logsdon & Karlen, 2004; Wang et al., 2014).

5.3. Final Age calculation
The Dr is computed by the sum of all attenuated radionu-

clide components which include DU
α , DU

β
, DU

γ , DTh
α , DTh

β
,
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Figure 9. Correction factors for adjusting geomagnetic field variations for time (a) and altitude (b) (Prescott & Hutton, 1994).

DTh
γ , DK

β
, DK

γ , DRb
β

, and the cosmic dose rate Dc. LDAC cal-
culates the final age based on Eq. 1; the mean dose rate and
age is calculated from mean values before rounding to two
significant figures. The dose rate and associated uncertainty
are reported in the “Summary” page at two significant figures
(e.g., 2.75 mGy/yr). The final age is reported to the nearest 5-
year increment if < 50 ka and rounded to the nearest 10-year
increment for ages > 50 ka, reflecting inherent resolution.

5.4. Error propagation
LDAC provides two approaches to evaluate the uncertain-

ties of the environmental dose rate and hence the final age.
The first one is based on quadrature (Aitken 1985, p. 241–
251; Taylor 1997, p. 45–92). However, all uncertainties
propagated in quadrature will underestimate the total error
because parts of dose rate from γ, β and α are correlated,
which share the same source of errors from nuclide measure-
ments (Grün 1994; Grün 2009; Taylor 1997, p. 45–92). To
overcome this drawback, LDAC computes and attenuates the
α, β and γ radiations from each nuclide independently in all
steps and propagates the errors in quadrature separately in
each step. Until the last step, all errors are combined based
on:

σDr =

√√√√√√√√
(

σDU
α
+σDU

β

+σDU
γ

)2

+

(
σDTh

α
+σDTh

β

+σDTh
γ

)2

+
(

σDK
β

+σDK
γ

)2
+

(
σDRb

β

)2

+(σDc)
2

(27)

σage = Age

√(
σDe

De

)2

+

(
σDr

Dr

)2

, (28)

where σDU
β

is the uncertainty of attenuated β dose rate (in-

ternal and external) emitted by U; it combines the random
and systematic errors from nuclide measurement, conversion

factors, attenuation factors and water content in quadrature.
All other subscript of each σ has a corresponding meaning.

The second method for propagating the uncertainties in
the final age estimate from all data sources is through Monte
Carlo simulations. This approach is commonly used in nu-
meric analysis to more faithfully propagate the uncertain-
ties that are statistically robust (e.g., Anderson 1976; Duller
2007; Vermeesch 2007; Shao et al. 2014). This analysis as-
sumes that each numeric value of input variables (e.g., U,
Th, K, Rb, water contents), conversion and attenuation fac-
tors and their associated errors are represented by a Gaussian
distribution of possible values. A large amount of repeated
Dr and age calculations (e.g., 1000) are undertaken with
stochastic values drawn from the independent Gaussian dis-
tributions (Shao et al., 2014). The 68.3% CI is evaluated by
the 15.85 % and 84.15 % quantiles of outputs of the Monte
Carlo simulations, and this asymmetric age interval is avail-
able in the final report (Supplement B). The 1σ uncertainties
for the Dr and the final age are determined by the standard
deviations of the Monte Carlo results (Cox, 2006). The de-
fault Monte Carlo iteration times in LDAC is 1000 which
can be modified. This Monte Carlo simulation is a stochastic
numeric analysis to propagate estimates of the total uncer-
tainties, and thus these uncertainties will vary slightly with
each calculation (Duller, 2007). The central values of Dr and
OSL age are still calculated based on the input values rather
than the mean of the Monte Carlo outputs.

5.5. Comparisons with other calculation packages
All algorithms for equivalent dose and dose rate calcu-

lations in LDAC are well developed by the community in
the past thirty years. The key merit of the LDAC is assem-
bling the most used functions for calculating the lumines-
cence age to one package. To test the consistency between
LDAC (v1.0) and other existing calculation tools, we com-
pared both the De and Dr calculated by different published
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Table 4. Comparison between equivalent doses (De) calculated by LDAC and R `Luminescence' package. BG4285 is the example data set
of LDAC (v1.0) and the ‘simulated sample’ is the data set used in Section 4.2.3

Sample Software
CAM

MAM MAX
De Overdispersion

BG4285 LDAC 366.05 ± 10.06 16.43 ± 2.03 325.68 ± 21.90 407.20 ± 27.92

`Luminescence' 366.05 ± 10.06 16.43 ± 2.03 314.27 ± 17.48 NA

Simulated LDAC 110.42 ± 7.02 63.30 ± 4.52 47.59 ± 0.71 237.22 ± 17.28

sample `Luminescence' 110.42 ± 7.02 63.30 ± 4.52 47.54 ± 1.11 226.52 ± 9.81

Figure 10. Comparison of dose rates (Dr) calculated by LDAC and
DRAC. BG4285 is the example data set in LDAC (v1.0). DRAC-
Q, DRAC-F and DRAC-PM are quartz, feldspar and poly-mineral
example data sets provided by DRAC (Durcan et al., 2015), respec-
tively. The raw data and used parameters are provided in Supple-
ment D.

software. The comparisons show that our De and Dr are con-
sistent with the results calculated by the R `Luminescence'

package and the DRAC within the error range, respectively
(Table 4; Fig. 10). However, the standard error of dose rate
calculated by LDAC is systematically greater than that of
DRAC (Fig. 10), which is caused by the different error prop-
agation strategies stated in Section 5.4.

6. Discussion and Future direction
LDAC is a user-friendly, statistically robust, and self-

contained luminescence age calculator which provides
equivalent dose, environment dose rate, and final age calcula-
tions. This platform is accessible in a Windows environment
equipped with Microsoft Excel 2010 or later. The framework
of this software openly defines the calculation processes and
input and output parameters. This Excel-based program, be-
yond a calculation tool, can be an effective manager of OSL
data. Users can store the parameters of SAR sequences, in-
dividual aliquot or grain De values, dose rate information,
pertinent diagnostic metrics on data quality and other ana-
lytical results as a separate LDAC file for each dated sedi-

ment. LDAC requires users to input or import their measured
data just one time, which can reduce potential mistakes in ex-
changing data among multiple calculation programs.

This is the first generation of LDAC as an open-source and
free access luminescence age calculation software. We plan
to further develop and refine this software with advances in
luminescence dating and community input. This calculation
platform will also evolve for dating and research applications
with improvements to the Microsoft Excel. The conversion
and attenuation factors for dose rate calculation will be up-
dated to reflect periodic refinements. Moreover, future ad-
ditions of LDAC may include new statistical models (e.g.,
Guérin et al. 2017) for assessing disequilibrium of U and Th
decay series and improved formulations for variations in cos-
mic and galactic radiation with fluctuations of Earth’s mag-
netic field. Improving the calculation efficiency of Monte
Carlo simulation is also a direction of future optimization.
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This excellent paper is a welcome addition to the suite

of software available for luminescence dating, and draws to-
gether a range of calculations that would otherwise be scat-
tered across different programmes. The authors’ parame-
terisation of the soft component of the cosmic dose rate
(Eq. 24) is similar to that originally developed by Robert
Clark in 1997 for his unpublished software “Cosmic”. In
that software he parameterised the data from Prescott & Hut-
ton (1988) with the following function which was adopted
for DRAC by Durcan et al. (2015).

Dc = 3.21×10−2x4−1.35×10−1x3 +2.21×10−1x2

−2.07×10−1x+0.295

40


	. Introduction
	. Architecture of LDAC
	. Statistical parameters and graphical presentation of observed De values
	. Statistical parameters
	. Graphical presentation

	. Age models for De determination
	. Central age model
	.  Minimum age models
	Statistical principle of minimum ages models
	Markov chain Monte Carlo slice sampling for parameters estimation
	Validation of slice sampling MAM

	. Maximum age models

	. Environmental dose rate (Dr) and final age calculation
	. Conversion and attenuation factors
	. Cosmic Dose Rate
	. Final Age calculation
	. Error propagation
	. Comparisons with other calculation packages

	. Discussion and Future direction

