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Linear regression of TL data

G.W. Berger and D.J. Huntley
Department of Physics
Simon Fraser University
Burnaby B.C.

Canada V5A 1S6

Introduction

Recently, Rendell (1985) has presented a comparison of five
approaches to Tlinear regression of TL signals versus applied dose.
The fifth approach apparently represents the one used at S.F.U.,
but it is titled and summarized incorrectly. This note presents
the technique we use, outlines how it differs from the other four,
and states why we believe the latter are inappropriate.

Background

The history of attempts to develop rigorous techniques for
1inear regression has been outlined by York (1966). He proceeded
to develop an exact solution to the generalized problem, following
the initial approach of Deming (1943). York showed that because
experimental uncertainties in the values of the variables X and Y
will vary from point to point, the most general approach requires
solving, iteratively, a recursive "cubic" equation in the parameter
b (slope). This recursive equation (his equation 20) he called the
"least squares cubic".

In application it 1is necessary to assign uncertainties to
each Xj and Yj, uncertainties which may vary from point to point.
In practice this assignment 1is usually done by choosing weights
w(Xi) and w(Yi) that are inversely proportional to the variances in
the respective variables. This, and other special cases of the
generalized equations of 1966 are discussed and illustrated
graphically in a short paper by York (1967). In a later
publication, York (1969) developed a generalized solution of this
"least squares cubic" for the case of uncertainties in X and Y that
are correlated.
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In the general case one may, therefore, have considerable
mathematical complexity. In TL work this complexity is fortunately
absent, because there 1is no evident correlation between the
uncertainties in the TL signal and those 1in the applied dose.
Furthermore, random uncertainties in the applied dose may be
negligible; this will be true if random errors in both the dose
rate and irradiation times are insignificant. There remains the
question of how to determine the variances in the TL intensities.
One could measure these; however, since a rather large number of
(>10) sample discs would need to be measured for each point, this
approach is somewhat impractical. Instead, we argue that TL
intensity variations are due to variations 1in the amount or
distribution of matter on the sample disc, or are due to intrinsic
brightness variations of sample grains. In these cases one would
expect the variance of the TL intensity to be proportional to the
square of the TL intensity.

Analysis of TL Data

Our approach is thus based on the following criteria:

(i) any random errors in the laboratory irradiation doses
are insignificant,
(ii) uncertainties in the TL intensities are the same
percentage of the intensity for all data points,
(iii) values for both the equivalent dose (Deq) and its
uncertainty are required.

These three criteria dictate the use of the following
equations, derived from York (1966), where Y is applied dose and X
is the TL signal:

Y =a+ bX (1)
where a = Dgg,
a=V -k b = I W(X{)Vi?
I w(Xi)UiVi
X o= L w(Xi)Xy | Y= LwXy)Yy

I w(Xq) Y w(Xi)

Ui = Xj-X and Vi = Y§ - V.

The variances of a and b are given by

62 = o2 . T w(Xi)X52 and
I w(Xy)
op? = Lo I w(Xi) (bU4-V4)2

I w(Xj)ui2
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ATl sums are from i = 1 to n, where n is the number of data points.
For a constant imrcent error p, the weighting factors are given by
w(Xj) = (pXj)~¢, but since p cancels out of all expressions, we
use w(X5) = X372,

It is not strictly correct to state, as Rendell does, that
this approach treats dose as the dependent variable. The TL signal
is still the dependent variable, but the requirements of weighting
and error calculation necessitate a change from the usual notation.
Rendell also states our equations for U and V incorrectly.

Discussion

None of the first four approached as described by Rendell
meet the criteria stated at the beginning of the previous section
and, therefore, we believe they are invalid. In particular, none
of them provide an uncertainty 1in the equivalent dose, and the
first three use inappropriate weighting factors,

Application of our method to the set of data given by Rendell
yields Dgq = 10.95:1.12 and a slope of 2.07+0.15 (this is to be
compared with the reciprocal of the slopes in her table). The
large uncertainty 1in Deq is expected because of the large
extrapolation. In practice, we prefer to avoid the use of linear
regression for such data and to apply a larger range of doses, even
if it becomes necessary to use sublinear regressions (higher order
polynomials or saturating exponentials). However, that is another
issue and will not be discussed here.

Finally, it should be apparent from our comments and from York's
work that it is not wuseful to invoke values of "correlation
coefficients" to describe the quality of data sets. This data
correlation coefficient (r in Rendell) supplies 1ittle or no useful
information about the quality of the regression. What is useful,
however, 1is a "goodness-of-fit" parameter, such as described by
York (1969) (his [S/(n-2)]1/2 parameter).  This and analogous
goodness-of-fit parameters (see also Brooks et al 1972) are used
routinely in the assessment of isochrons in radioisotopic dating.
Unfortunately, its utility depends on an independent knowledge of
the uncertainties 1in each TL observation, Such a state of
knowledge does not yet exist in TL work because the variablility of
TL signals is dominated by unspecified grain-to-grain or disc-to-
disc differences,
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Reviewer's Comments

As the authors point out, there are some inaccuracies in
Rendell's description of their method. They should have an
opportunity to correct them, and to state the assumptions on which
their method is based. However, since the scope of a newsletter
such as 'Ancient TL' does not allow detailed justification of the
method, it 1is clear that many readers will require to consult
York's original paper 1in order to understand the rationale behind
the method and to assess its wusefulness, For example, one
potentially confusing aspect is the formulation of the 1line,
equation (1). Here Y Tooks 1ike the dependent variable - hence the
original mistake by Rendell. In fact if (1) dis turned around to
X= =~ a+l/bY, then the estimate for b 1is just the inverse of the
usual weighted least squares estimate for 1/b in the regression of
X on Y., In view of this it is difficult to see, without access to
York's paper, how the error estimates have been derived, and in
what respect the approach differs from the standard 'X on Y' case
(in their notation).

A further point to note 1is that N. Debenham's method,
summarised as approach four in Rendell, does provide a measure of
the uncertainty in D, given by the (asymmetric) intercepts of the
one-sigma hyperbolic confidence bands for the regression of X on Y
(in their notation). Readers could be given the (incorrect)
impression that York's method 1is the only one meeting the criteria
stated in the paper.

Morven Leese (Statistician, British Museum Research Laboratory)
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Extrapolation errors in linear regression

A.D. Franklin
Department of Physics and Astronomy
University of Maryland
College Park
MD 20742

The use of various regression techniques to fit TL-dose data
(in the 1linear region) to a straight 1ine was recently discussed by
Rendell (1985). Variation covering a range of about 6% was found
among the intercepts on the abscissa. On the other hand, the
errors arising from the extrapolation fitself are rather larger and
may well make the differences among regression techniques
unimportant, at least until much more precise data are at hand.

-1% -10

-5
Dose (Min.)

Figure 1 Uncertainty in extrapolated Estimated Dose from TL
data of Rendell (1985). Points are Rendell’s data;
solid line 1is simple linear regression line; dashed
lines define 95% confidence band. The short heavy
portion of the abscissa around -11 min. represents
the spread of intercepts found by Rendell for
various regression techniques.
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For illustration I have plotted the table of data given by
Rendell in her paper in figure 1. The intersection of the
confidence band with the x-axis gives the wuncertainty in the
intercept at the 95% confidence level. Numerically the intercept
and its uncertainty are expressed by:

- 3.14 or +27%
xo = - 11.63
+ 4,51 - 39%

The statistical uncertainty is much Targer than the spread in
intercepts found by Rendell. Actually it is not necessary to
calculate the confidence band as such. Mandel (1964) gives
equations (egn. 12.20 - 12.25, p. 281) for the confidence 1imits of
the intercept on a specific horizontal 1line, in this case the x-
axis.

It should be noted that where several runs are made at each
dose and the means used to form the linear plot, the uncertainty in
the intercept must reflect not only the scatter of the mean values
about the regression 1line but also the uncertainty in the means.
Note also the use of the 95% confidence interval for the intercept.
When comparing a statistical with a systematic error, it is
advisable to use a realistic confidence level for the former.

Improvement (reduction in the statistical uncertainty) can be
brought about by increasing the precision of the data, the number
of runs at each dose, and the number and range of doses. Because
we can usually afford only a limited number of runs overall, the
judicious distribution of these over the range of doses is an
important question. These infuences can readily be seen using a
simplified version of Mandel's egn. 12.25. We may calculate the
intervals Ax between the confidence 1imits for the intercept and
expand it in terms containing V (8), the standard deviation
(? variance, Rev’r) of the data points about the regression 1line.
Only the leading term makes an appreciable contribution:

ax = Pt [V(s)/n np(xp-¥)2] 172
g 2 P

The quantities t. (the critical value of student's t) and B
(the slope of the regression 1ine) are not at our disposal, and
/V(8) reflects the precision of the data, which we know we must
optimize. We are left with the ratio Y/V/E' np(xp—i)2 to

manipulate to achieve minimun error in the extrapolation, in which
x and y are the mean values, the subscript p indicates the dose,
and Np is the number of values at the pth dose.

The sum Bnp(xp-i)2 can be maximized by maximizing the range

of doses, and suggests putting greatest weight at the ends of the
range. The average y can be minimized by making most of the runs
at zero dose.
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These conclusions can easily be made quantitative and
practical for the special case in which we are confident of the
linearity of the data. Then only two doses are required, zero and
the largest possible within the 1linear range. Setting the total
nunber of runs we can afford equal to

N = n +n3 (2a)

where np is the number of zero-dose and n3 the number of maximum-
dose runs (let np = 0 for the mament), we can minimize the ratio
y/ /B np(xp-x)2 with respect to n;, holding N constant. The

result is the remarkably simple prescription
Mmoot (2)
n3 ¥l
Equation 1 may be further manipulated, using egns. (2a) and
(2b), to yield a value for the total number of runs needed to yield
a predetermined precision level in the intercept:
N = 4k(l +k)t§ (3)
RZ
where R is the ratio,
R = (ax/2xq) / (0/y1),

with o the standard deviation of the TL value for a single run and

k = X0 = Intercept

X3 = X} Max imum Laboratory Dose

We note that t. depends upon N so egn. 3 is solved comparing N/tc2
to values derived from statistical tables. Eqn. 3 is plotted in
fig. 2 for several values of R for 95% confidence intervals.

To obtain the intercept with maximum efficiency, the maximum
range of doses within which linearity is expected to hold is chosen
and a few runs made at each end to yield a trial intercept and
estimate of o. These data are used to calculate k and R, after
selection of the desired precision for the intercept. With k and
R, a figure such as fig. 2, which 1is appropriate for a 95%
confidence level, can be consulted to obtain N, the minimum total
nunber of runs needed, and these divided between zero and maximum
laboratory dose according to egn. 2b. The value for N obtained
from fig. 2 is a minimun. In practice, the number of runs at
max imun dose should not be less than 3.
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Figure 2

10 } Total number N of runs needed
o to obtain a given error in the
intercept. R 18 the ratio of
(Ax/2xp) to (o/y;) where Ax
18 the 95% confidence intervdal
in the intercept xp, A the
standard deviation for
replication of a single rwn,
and yj the NTL.
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The impact of this treatment may be illustrated again using
Rendell's data, preserving the Tlinear regression and the
uncertainty in the data. Let us set ax/xg, the relative 95%

confidence interval, at 40%, or =+ 20%. The pooled standard
deviation of the intensity data is 0.372 and y; = 5.229, leading to
R = 2.8. The intercept and range are nearly equal, or k ~ 1.

Consulting fig. 2, we find the minimum nunber of runs needed, N, to
be 8, the same as the actual number. The ratio (y3/y;) of maximum
dose/zero intensities is 2.29. If we concentrate all of the runs
at zero dose and the maximum dose, and set n; = 6, n3 = 2, we
obtain a value for Ax = 4.9 min. compared to 7.1 min. for the
uniform distribution across the 4 doses in the original data. This
is a substantial reduction in error. Much of the reduction is
already accomplished (Ax = 5.3 min) by dividing the runs equally
between just the two doses zero and maximum,

[t must be emphasized that this simple prescription can be
used only when we have already proved the Tinearity of the data.
To do that obviously requires runs in the middle of the range, as
well as at the ends. Since it seems probable that the major
departure from linearity arises from a quadratic term (e.g., the
next term in the expansion of the exponential in a saturating
curve), the most efficient test for curvature can be made using
several (say np = [ny + n3]/2) runs exactly in the middle of the
range (at [x; + x3]/2). An appropriate test is to examine the F-
statistic

where Vp is the replication variance of the data (the variance of
the runs at each dose, pooled over all runs). If F exceeds the
critical value at the confidence leve]l chosen (e.g. 5%) for the
degrees of freedom appropriate to V(s§) (N-2) and VR (N-1),
curvature 1is probably present.
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TL Networks

European Network on "Thermoluminescence Applied to Archaeology"

At a conference of European ministers responsible for
research, convened by the Council of Europe and held in Paris,
September 1984, the ministers declared their desire to intensify
scientific and technological research in Europe by strengthening
existing networks of co-operation and promoting the establishment
of new networks where required.

In order to comply with this declaration the Council of
Europe group PACT (Physical and Chemical Techniques Applied to
Archaeology), established in 1975, decided that its subgroups
including that on TL dating should be transformed into networks.

To review the situation 1in TL dating PACT organized a
European workshop on "Thermoluminescence in Archaeology" in
Ravello, Italy May 29 - 31. 1986 and invited the European TL
workers to participate. It was recognized at the meeting that the
TL community already has an informal world-wide network operating
through regular meetings and its newletter Ancient TL, and that the
emphasis of research has now shifted to sediment dating.

It was decided to leave the scientific and technological
aspects to the existing network and to recommend the establishment
of a European network on "Thermoluminescence applied to
Archaeology" in order to promote the application of TL for
archaeological dating.

The  European network  should include representative
archaeologists from the European countries and scientists from
European TL Tlaboratories engaged in dating materials of
archaeological interest. The next meeting is planned to take place
in the beginning of 1987 and progress will be reported at the TL
Specialist Seminar in Cambridge, July 1987.

Vagn Mejdahl
Ian Bailiff
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Erratum

Paleographical and stratigraphical references from TL properties of
Saalian and Weichselian loess of N.W. Europe. Balescu et al. AnTL
4(1).

In the Reviewer's comments a line was unfortunately omitted: The
second paragraph should have read;

In respect of the latter use, a number of questions arise.
As no bleaching curves are presented, overbleaching may have
occurred, Wintle (1985) has suggested that dose-dependent
sensitivity changes may occur when a sample 1is exposed to 1light,
but whether such dose dependent changes would survive significant
overbleaching is presently unknown. Investigation of sensitivity
changes in the samples in the present study might provide an answer
to this question.



