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Introduction  
The increased use of the single aliquot regenerative 
(SAR) dose protocol and its current acceptance as the 
preferred protocol for dating quartz calls for efficient 
methods for purifying quartz. Common components 
of the sediment that need to be removed are salts, 
clays, carbonates, organic matter, heavy minerals and 
feldspars. Salts are usually water soluble; clays can 
be removed by sieving or decanting; carbonates are 
dissolved by 5-10% HCl; and organic matter is 
oxidized by concentrated peroxide or bleach.  
 
Removing heavy minerals and feldspars is normally 
the most time consuming part of the procedure. 
Commonly, heavy minerals, feldspars and other 
contaminant minerals are removed by a 2-step 
density separation, using heavy liquids with densities 
that are slightly heavier and slightly lighter than 
quartz (Wintle, 1997). As it is imperative that the 
purified quartz contains no measurable feldspar, 
concentrated (40-48%) hydrofluoric acid (HF) is 
typically used to dissolve the remaining feldspars and 
at the same time etch the quartz.   
 
An alternative method for removing heavy minerals 
and most feldspars is magnetic separation. Whilst this 
is not a new procedure (Rosenblum, 1958), the use of 
it within luminescence is currently not common. 
Aitken (1985; p.18) mentions it as one of the many 
techniques used for mineral separation, and in the 
past it was used in the Research Laboratory for 
Archaeology and the History of Art, Oxford 
(Fleming, 1966). This paper aims to provide a 
description of the procedure.  
 
The advantages of magnetic separation are 
effectiveness and simplicity. The modern magnetic 
separators are stable and the results reproducible. The 
non-magnetic fraction remaining after separation 
consists of almost pure quartz and can be etched with 
relatively small volumes of HF, thus saving time, 
chemicals and heavy liquids. 

 
The need for a different method for mineral 
separation in the luminescence dating laboratory at 
the Geological Survey of Israel (GSI) arose when 
attempting to extract quartz from sediments of 
alluvial fans in hyperarid regions. Besides quartz and 
feldspars, these poorly sorted sediments contained 
large amounts of very angular sand-sized chert. 
These chert grains could not be dated by OSL as, 
first, they were mostly not allochthonous but formed 
within the sediment by shattering and disintegration 
of chert pebbles due to action of salts, and had thus 
not seen sunlight; and second, due to their opacity 
they do not bleach during transport. Therefore it was 
crucial to remove the chert for successful dating. 
 
The chert could not be separated from the quartz by 
the physical or chemical methods commonly used at 
the time in the laboratory, such as density separation 
or selective dissolution, because the density of chert 
is close to that of quartz, and it is only marginally 
more soluble than quartz in HF. Fortuitously, 
magnetic separation using a Frantz LB1 with a high 
current on the magnet proved suitable for removing 
the chert as well as most feldspars, insoluble 
dolomite and the majority of heavy minerals. 
Subsequent heavy liquid separation at a density of 2.7 
g/cm3 showed that only several grains of heavy 
mineral remained, mostly apatite and fluorite. Zircon, 
a luminescent mineral, is very rare in sediments and 
is highly unlikely to remain after magnetic 
separation. 
 
Magnetic separation is a common physical method 
used for separating minerals with different magnetic 
properties. In industry it is used to concentrate 
ferromagnetic and paramagnetic ore minerals (e.g. 
Augusto and Martins, 1999). In Earth Sciences it is 
used for extracting diamagnetic mineral fractions 
from igneous and metamorphic rocks for dating or 
for geochemical analyses (e.g. Kolodner et al., 2006).  
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Equipment description 
Magnetic separators used in Earth Science 
laboratories comprise an electromagnet, a feeder, and 
a sloping and tilting chute that pass the grains by the 
magnet (Figure 1). The grains fall from the feeder 
and move along the chute due to its vibration. As 
each grain runs by the magnet it is either attracted to 
the magnet or it falls to the sloping side of the chute. 
A split in the chute separates the more magnetic from 
the less magnetic grains, and each are collected in 
separate, designated boxes. By adjusting the current 
on the magnet using guides from published tables 
(Rosenblum, 1958) and trial and error, almost any 
two minerals can be separated. Adjusting the slope 
and tilt is useful for different grain sizes and shapes.  
 
Magnetic separation is now used at the GSI 
laboratory as part of the routine mineral separation 
protocol. It follows sieving and dissolution of 
carbonates. The sample needs to be washed of fines 
(<40 µm) and dry. The Franz magnetic separator is 
situated in the dark laboratory and separation is 
carried out under the required subdued orange-red 
light. A small red pin-light is used to check the grain 
flow from the feeder onto the chute. 
 
The feeder may contain up to 100 g, but most 
samples for OSL dating are much smaller. Sample 
flow can be as high as 10 g/min, still with effective 
separation. However a more practical flow rate is 
about 2 g/min, which would take about 10 minutes to 
separate a characteristic sample weighing 20 g. There 
is essentially no sample loss and even very small 
samples (a few hundred mg) can easily be separated 
and retrieved using low flow rates. 
 

 
 
Figure 1: The Frantz Magnetic Barrier Laboratory 
Separator Model LB-1 at the GSI. 
 

So far, separation has proved to be efficient for a 
large range of grain sizes, from 64 µm to 350 µm, 
and the resulting quartz is very clean (Figure 2). Over 
the years, quartz has been extracted in this way from 
a variety of soils (Terra Rossa, basaltic soils, 
rendsina), desert loess, and fluvial and aeolian 
sediments.   
 
Effective separation is judged visually by placing a 
small sample from the non magnetic fraction under a 
binocular (using white light) and checking that no 
dark or opaque mineral grains are visible and that the 
extracted fraction is essentially quartz. Further tests 
for the presence of feldspar are routinely carried out 
during OSL measurements using the presence and 
magnitude of the IRSL signal. In 95% of the samples 
prepared at the GSI laboratory the IRSL signal is less 
than 5% of the total OSL signal (measured as the 
ratio between an ordinary recycling point and an 
additional post IR recycling point). 
   
For fine sand sediment (74 to 180 µm) the optimal 
setting was found to be:  
 
Slope of 25°, tilt of 17° 
Current -1.4-1.5 Amp on the magnet 
Sample flow rate: 2-3 g/min 
 
One run through the magnetic separator is usually 
sufficient to extract clean quartz. Re-running the 
magnetic fraction may result in extracting a few 
additional quartz grains and this is recommended 
when sample size is very small. Re-running the non 
magnetic quartz fraction is not necessary as this 
fraction will undergo etching with HF. 
   
The magnetic fraction in a sample may vary between 
10 and 70% of the sample. In some cases the 
magnetic fraction contains quartz grains which will 
not be separated by a second pass through the 
magnet. Usually those are quartz grains coated by 
iron oxides or containing heavy mineral inclusions. 
Reducing the current on the magnet to 1.2-1.3 Amp 
may increase the yield of this type of quartz into the 
non-magnetic fraction.  
 
For most samples the great majority of feldspar 
grains are removed by magnetic separation. As it is 
then not necessary to dissolve large quantities of 
feldspars, only small amounts of HF are needed for 
obtaining pure quartz. Stoichiometrically, only 2 cm3 
of concentrated (40%) HF per 1 g of quartz are 
necessary for dissolving the quartz, however 
routinely much more is used when dissolving 
feldspar. We found experimentally (by checking for 
the presence of IR signals as mentioned above) that 
for the majority of samples, 5 cm3 HF per 1 g quartz  
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Figure 2: Images of samples after magnetic separation. The non magnetic fraction is essentially pure quartz. 
(a) Magnetic (top) and non magnetic (bottom) fraction of four sand samples. 
(b) Close up of sample before magnetic separation. Note abundant quartz, feldspar (pale, opaque) and 

some heavy mineral grains (125-150 µm). 
(c) Close up of the non-magnetic fraction. A few remaining feldspar grains are visible (125-150 µm). 

 
 
will remove any remaining feldspars while etching 
the quartz. A smaller volume of HF occasionally 
resulted in IR signals. It should be noted that even in 
samples with some IR signal, the amount of feldspar 
remaining after HF etching is so low that it cannot be 
detected with X-ray diffraction.  
 
Practicalities 
The model used in this study is the Frantz Magnetic 
Barrier Laboratory Separator Model LB-1, which is 
about 15 years old (for more information see 
http://www.sgfrantz.com/labsep.htm). The separator 
is located in a light-tight room and can be used either 
under normal neon lights or with subdued orange 
lights. It is shared with other geologists requiring 
mineral separation. Using it is very straight forward 

and students can use it independently after a single 
demonstration. 
 
A binocular microscope in the laboratory is 
necessary, used to examine tiny amounts of the 
magnetic and non magnetic fractions under white 
light, to verify that separation was successful and that 
essentially only quartz is present in the non-magnetic 
fraction. Cleaning between samples is carried out 
using pressurized air and a brush.  
 
Magnetic separators are usually found in geology and 
mineralogy departments. The most common 
instruments are made by S.G. Frantz Company, Inc. 
Before making any major purchases, it is worth going 
to the nearest laboratory with a magnetic separator to 
try out a sample that can be exposed to light. The 

http://www.sgfrantz.com/labsep.htm
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features one should look for are ease of operation in 
semi darkness and the stability of the magnetic field. 
In very old models the magnet tends to overheat and 
the current on the magnet drifts to lower values. 
  
In most dating labs, magnetic separators will be used 
only for part of the time. Since the cost of a modern 
magnetic separator is in the range of US$18,000, it is 
worth considering buying it jointly (or using an 
available one) with other departments. As long as the 
laboratory can be made light-tight and fitted with 
appropriate lighting for OSL sample preparation, 
sharing an instrument is feasible. 
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Abstract 
Optical ages were determined for samples from delta 
and sand dune deposits associated with Glacial Lake 
Hitchcock near Amherst, Massachusetts using the 
single aliquot regenerative-dose (SAR) optically 
stimulated luminescence (OSL) technique.  However, 
a strong unstable ultrafast component caused initial 
rejection of data from a large proportion of aliquots.  
A linearly modulated blue OSL (LM-OSL) study was 
undertaken on the sample with the strongest ultrafast 
component, with the data modelled using the 
equation of Bulur et al. (2000) as 5 fast, medium and 
slow components, and 1 ultrafast component. 
 
The ultrafast component dominates the LM–OSL, 
almost completely obscuring the fast component.  As 
suggested by Jain et al. (2003), the thermal stability 
of the ultrafast component was examined, using 
temperatures between 180°C and 300°C (10s preheat) 
and extended preheats at 300°C (10-60s).  Preheats of 
sufficient stringency to remove the ultrafast 
component (300ºC for ≥ 20s) also strongly depleted 
the fast component. The stabilities of the ultrafast and 
fast components were also examined as a function of 
low-power, short-duration continuous-wave blue-
light stimulations (CW-OSL).  A 3.0s, 0.35 mW.cm-2 
(1% diode power), 125ºC preshine in combination 
with a 240ºC/10s preheat removed the ultrafast 
component, and caused significantly less fast 
component depletion than more stringent preheats.  
Data from a modified SAR procedure in which each 
OSL measurement is preceded by a low-power 
preshine have improved recycling ratios and reduced 
equivalent dose (De) errors.  De values and resultant 
ages determined using the preshine-based SAR 
proposed here are consistent with regional age 
constraints on the delta and sand dune samples from 
Glacial Lake Hitchcock. 
 

Keywords 
Ultrafast OSL component, Linear Modulation OSL, 
Glacial Lake Hitchcock 
 
Introduction 
Samples of eolian and deltaic sand associated with 
Glacial Lake Hitchcock near Amherst, Massachusetts 
(Rittenour, 1999; Rittenour and Brigham-Grette, 
2000; Rittenour et al. 2000) were analyzed using the 
single aliquot regenerative (SAR) protocol (Murray 
and Wintle, 2000), using sample preparations as 
outlined in Rittenour et al. (2003, 2005).  Analysis 
was carried out on a Risø TL/OSL-DA-15B/C reader 
with blue-green (470±30 nm; maximum power 35 
mW.cm-2) and infrared LEDs and a 7.5-mm Hoya 
U340 filter (340±50 nm) (Bøtter-Jensen et al., 2000).  
The software version of the MiniSys code was 1.11. 
In screening SAR optically stimulated luminescence 
(OSL) data using rejection criteria, consistent 
problems were noted with recycling ratios and 
equivalent dose (De) errors calculated from growth 
curves, resulting in an unusually large scatter in 
equivalent dose (De) values and a high proportion of 
data discarded. The problems were traced to the 
presence of a strong unstable ultrafast component 
(Jain et al. 2003, Choi et al. 2003). A linearly 
modulated OSL (LM-OSL) study was undertaken on 
the sample showing the strongest ultrafast component 
(GLH-06-09-782, Table 5) to determine a method for 
removing this component. LM-OSL studies were 
carried out by ramping the stimulation light intensity 
from 0 to 35 mW.cm-2 (100% power) over 3000s 
(3000 channels), following a 250Gy irradiation. All 
LM-OSL measurements were carried out at 125°C on 
a single aliquot of the sample GLH-06-09-782.  
Because of the low sensitivity of this and other 
Glacial Lake Hitchcock samples, large (5 mm) 
aliquots of 90-125, 90-150 or 150-180 µm quartz 
sand were used in all OSL analyses. 
 

mailto:rgoble2@unl.edu
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Figure 1: Location of Glacial Lake Hitchcock within the Connecticut River valley in the northeastern United States. 
 
 
Study area 
Samples for OSL dating were collected from relic 
delta and sand dune deposits from Glacial Lake 
Hitchcock, near Amherst in central Massachusetts 
(Figure 1). Glacial Lake Hitchcock formed in the 
Connecticut River valley during retreat of the 
Laurentide ice sheet at the close of the last glaciation.  
As the ice margin retreated northward, the lake 
formed behind a sediment dam in central Connecticut 
and extended 320 km to the north within the 
Connecticut River valley into northern Vermont.  A 
count of annual varves from the lake basin indicates 
that the lake existed for over 4000 years (Antevs, 
1922; Ridge et al., 1999, 2001; Rittenour, 1999).  
Radiocarbon age control from the New England (NE) 
varve chronology suggests that Glacial Lake 
Hitchcock formed prior to 15.0 14C kyr BP and 
drained by 11.8 14C kyr BP (~18.0 and ~14.0 cal kyr 
BP) (Ridge et al., 1999), although recent re-
correlations suggest the lower portion of the NE 
varve chronology may be 700 years older (Ridge, 
2003).  During the existence of the lake, large deltas 
formed at the mouths of tributaries entering the lake 
basin. Subsequent to lake drainage, sand dunes 
formed on the exposed non-vegetated lake bottom, 
deltas and early terraces cut by the Connecticut River 

(Rittenour, 1999; Rittenour and Brigham-Grette, 
2000). OSL samples were collected from these pre-
drainage delta deposits and post-drainage eolian 
deposits in order to better constrain the timing of lake 
drainage. 
 
Modelling of LM-OSL data 
A background correction was determined by 
averaging the LM-OSL (3000 channels, 3000 
seconds, 0 to 35 mW.cm-2 (100%) diode power, 
125ºC) on two blank aluminium disks coated with 
SilkosprayTM. The LM-OSL background (Figure 2) 
shows an increase in intensity with applied power, 
similar to the background observed in the LM-OSL 
study of Choi et al. (2006); the data were fitted with a 
third order polynomial. A similar background, with 
somewhat lower intensities at higher powers was 
observed using a stainless steel disk during LM-OSL 
measurements; this finding was also checked by 
setting the diode power to various levels (0, 10, 20, 
30…90, 100%) and measuring the background 
signal. These continuous wave OSL (CW-OSL) data 
are also shown on Figure 2, and show a similar 
pattern of increase.  A similar CW-OSL measurement 
of the background using infrared diodes (125ºC) does 
not  show  the  increase  in  intensity with power. The  
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Figure 2: LM-OSL and CW-OSL data, collected 
while holding the sample at 125°C, from a sample 
disk coated with SilkosprayTM, following 250 Gy 
irradiations and 240ºC/10s preheats. LM-OSL data 
represent the average of two measurements; CW-
OSL measurements are averaged photon counts per 
second (100s acquisition) at the specified power 
(upper scale). An aluminium disk was used, unless 
otherwise noted in the legend. Blue LED voltages 
measured at the test point on the rear of the Minisys 
are also shown, referenced to the right-hand scale. 
 
voltage applied to the blue LEDs as a function of 
applied power is also shown in Figure 2. These data 
show no curvature within the error of the 
measurement (0.01 volts), and we conclude that the 
non-linearity in the background is due to increased 
filter breakthrough with increased power to the 
diodes, rather than non-linearity in the intensity of the 
light emitted by the LEDs. In a similar LM-OSL 
study, Choi et al. (2006) demonstrated that the 
increase in intensity of light emitted by their diodes 
was linear, although the background count rates from 
a blank disk were non-linear, and attributed the non-
linearity to possible slight changes in wavelength of 
the LED emission with power increase, allowing 
more photons to pass through the filter. A 
background blue LM-OSL correction based on the 
calculated polynomial has been applied to all 
subsequent data sets prior to peak fitting.  
 
LM-OSL measurements (0 – 35 mW.cm-2, 3000 s, 
3000 channels) were conducted on the natural GLH-
06-09-782 sample and the same aliquot following a 
250 Gy irradiation (Figure 3). A 240ºC/10s preheat 
and 125ºC measurement temperature were used.  The 
natural signal has been multiplied by 10 for 
comparison purposes. The irradiated sample has a 
strong ultrafast component, which dwarfs the other 
peaks; this peak is not present in the natural sample 
and is thus assumed to be unstable over the age of 
this sample. This unstable ultrafast component is 
similar to that noted by Jain et al. (2003). 

 
Figure 3: Natural LM-OSL (multiplied by 10) and 
LM-OSL following a 250 Gy irradiation (240ºC/10s 
preheat, 125ºC measurement). 
 

 
Figure 4: Natural LM-OSL, fitted with five 
components using the equation of Bulur et al. (2000). 
Component designation follows Singarayer et al. 
(2003). 
 
The natural LM-OSL data (Figure 4) can be 
adequately modelled as the sum of five peaks, using 
the equation of Bulur et al. (2000). As shown in 
Table 1, relative values of σ (Choi et al., 2006) for 
these components are similar to those observed by 
Singarayer and Bailey (2003), and their notation has 
been followed in this study. These five peaks plus an 
ultrafast peak, where present, were used in fitting the 
data from all subsequent experiments. 
 
Change in signal components as a function of 
preheat temperature 
Jain et al. (2003) noted that the ultrafast component 
in their sample could be eliminated by heating to 
260ºC; Choi et al. (2003) obtained satisfactory results 
using a test dose cut-heat of 220ºC.  LM-OSL runs 
were conducted on GLH-06-09-782 between 
180ºC/10s and 300ºC/10s, at 20ºC intervals, in order 
to determine the preheat temperature necessary for 
elimination of the ultrafast component (Figure 5a,  
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 Jain et al. (2003) Singarayer and Bailey (2003) This Study 

Component Relative σ Component Relative σ Component Relative σ 

Ultrafast 13 Ultrafast 28 Ultrafast 27 

Fast 1 Fast 1 Fast 1 

Medium 0.2 Medium 0.2 Medium 0.1 

Slow 1 0.06 

Slow 2 0.01 S1 0.01 S1 0.01 

Slow 3 0.001 S2 0.001 S2 0.001 

Slow 4 0.0001 S3 0.0001 S3 0.0003 

 
Table 1: Comparison of relative values of σ and the notation used by Jain et al. (2003), Singarayer and Bailey 
(2003), and this study. 
 
 
 
5b). The 300ºC preheat was repeated at 10 second 
intervals between 10 and 60s. Signal change is 
measured relative to the photon sum rather than the 
maximum photon count. Sensitivity change in the 
ultrafast and fast components, as monitored with a 
small test dose, is shown in the upper part of Figure 
5b; corrections have been applied to the data in the 
lower part of Figure 5b (the apparent sensitivity 
change shown by comparing 240ºC peak intensities 
in Figures 3 and 5 is probably related to a changed 
electronic board in the Minisys).  As noted by 
Packman et al. (in press), the ultrafast and fast 
components sensitize differently, particularly at 
temperatures above 240ºC. The ultrafast component 
(Figure 5b) is still present at 260ºC, but has been 
almost entirely removed by a 300ºC/10s preheat, 
although the 300ºC preheat must be maintained for at 
least 20 seconds (Figure 5a) to fully remove the 
ultrafast component.  Other signal components show 
similar depletions with increased stringency of 
preheat. Increasing the preheat from 240ºC to 
300ºC/20s depletes the fast component from 64±5% 
of the initial 180ºC intensity to 36±3%. The 
additional 56±6% depletion below the signal level 
remaining after a 240ºC preheat could be problematic 
in this low-response sample. Therefore, an alternate 
approach to removal of the ultrafast component was 
sought. 
 
Depletion of signal components as a function of 
CW-OSL power 
Use of a low-power bleach to remove the ultrafast 
component was explored as an alternative to a more 
stringent preheat. The sample was given a 250 Gy 
dose,  followed  by  a  240ºC/10s  preheat  and  a 10 s 
CW-OSL at diode powers between 0 to 0.35 mW. 
cm-2 (1%), followed by a 3000s, 3000 channel, 0 – 35 

 

(a) 

(b) 

 
 
Figure 5: a) LM-OSL following preheats at various 
temperatures and times (250 Gy applied dose, 125ºC 
measurement). b) Changes in signal strength for the 
six components required to model the LM-OSL 
signal. Changes in sensitivity for the ultrafast and 
fast components are shown in the upper part of the 
figure. 
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mW.cm-2 (100%) diode power LM-OSL 
measurement at 125ºC. There was no measurable 
change in the LM-OSL curves below 0.5% CW-OSL 
power setting, or between 0.5% and 1% CW-OSL 
power, suggesting that the system software interprets 
CW-OSL values below 0.5% as 0% power and values 
between 0.5% and 1% as 1% power, an observation 
confirmed by Duller (pers. comm., 2006). With ≥ 
0.35 mW.cm-2 (1% diode power), the ultrafast 
component was completely removed, and the fast 
component was depleted by 24±2%. This compares 
favourably with the 64±3% depletion associated with 
a preheat of sufficient stringency (300ºC/20s) to 
remove the ultrafast component, even allowing for 
the different effect of a 180ºC/10s vs 240ºC/10s 
preheat in these experiments.  A 0.35 mW.cm-2 (1%) 
power-level setting was used for all subsequent low-
power bleaching experiments.  The lack of change in 
the LM-OSL curves through five cycles of 0% CW-
OSL preshines or six cycles of 1% CW-OSL 
preshines also demonstrates that the long LM-OSL 
measurements are sufficient to remove the signal 
prior to the next cycle of measurements. 
 
Depletion of signal components with CW-OSL 
time at 0.35 mW.cm-2 (1%) power  
The time needed for a 1% CW-OSL preshine to 
remove the ultrafast component was explored by 
applying a 250 Gy dose, followed by a 240ºC/10s 
preheat and a short CW-OSL 0.35 mW.cm-2 (1%) 
power “preshine” at times from 0 to 3 seconds, 
followed by a 3000s, 3000 channel, 0 – 35 mW.cm-2 
(100%) power LM-OSL at 125ºC to measure 
remaining peak intensities; sensitivity corrections, as 
determined from a small test-dose following the LM-
OSL, were applied to the ultrafast and fast 
components.  LM-OSL curves with and without a 3 
second preshine are shown in Figure 6a.  Changes in 
intensity for all components, in 0.25s time-
increments, are shown in Figure 6b. Sensitivity 
changes in the ultrafast and fast components are 
shown in the upper part of Figure 6b; there is < 1% 
difference between the values. Decay curve data 
collected for the 3.0 s CW-OSL preshine are also 
shown. A 2.5 to 3.0 s 0.35 mW.cm-2 (1%) power 
preshine is sufficient to reduce the ultrafast 
component to a level similar to that observed using a 
300ºC/20s preheat (~99% removed). The fast 
component is depleted by approximately 8±4% at 
3.0s. This compares favourably with the 56±6% 
depletion in the fast component produced by 
increasing the preheat from 240ºC/10s to 300ºC/20s 
in order to fully remove the ultrafast component. 
 

 

(a) 

(b) 

 
Figure 6: a)  LM-OSL with and without a 3 s, 0.35 
mW cm-2 preshine (250Gy applied dose, 240ºC/10s 
preheat, 125ºC measurement); counts at ramping 
times greater than 30 s have been multiplied by 10.  
b)  Relative change in intensity of the ultrafast and 
fast components as a function of CW-OSL 0.35 mW 
cm-2 (1%) diode power preshine times.  Changes in 
sensitivity for the ultrafast and fast components are 
shown in the upper part of the figure. 
 
 
Sensitivity changes as a function of cutheat/ 
preheat temperature 
Packman et al. (in press) have shown that sensitivity 
change in a sample with an ultrafast component is a 
function of preheat/cutheat temperature, requiring the 
use of the same temperature (200ºC for their samples) 
for both preheat and cutheat in applying the SAR 
procedure.  This is also shown by the sensitivity data 
in Figure 5b. Sensitivity changes as a function of 
variations in cutheat and preheat temperature in 
sample GLH-06-09-782 were monitored by running 
the sequence shown in Table 2. The sensitivity 
change in the preshine data varies with stringency of 
the cutheat/preheat (Figure 7a).  However, the decay-
curve data measured subsequent to the preshine show  
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 Operation 
1 200s beta (~20 Gy) 
2 160°C/0s cutheat 
3 2s preshine (1% power, 125ºC) 
4 40s OSL (90% power, 125ºC) 
5 200s beta (~20 Gy) 
6 220°C/0s cutheat 
7 2s preshine (1% power, 125ºC) 
8 40s OSL (90% power, 125ºC) 
9 200s beta (~20 Gy) 
10 240°C/10s preheat 
11 2s preshine (1% power, 125ºC) 
12 40s OSL (90% power, 125ºC) 
13 200s beta (~20 Gy) 
14 260°C/10s preheat 
15 2s preshine (1% power, 125ºC) 
16 40s OSL (90% power, 125ºC) 
 Repeat cycle (1) to (16) 3 times 

 
Table 2: Sequence used to determine sensitivity 
change with cutheat and preheat temperature.  1% 
power corresponds to 0.35 mW.cm-2. 
 
 
 Operation 
1 Apply dose (0 for natural) 
2 Preheat, 260°C/10s 
3 3.0s preshine CW-OSL (1% power, 125°C, 10s 

pause) 
4 40s CW-OSL (90% power, 125°C, 10s pause) 
5 Test dose irradiation 
6 Cutheat, 220°C/0s 
7 3.0s preshine CW-OSL (1% power, 125°C, 10s 

pause) 
8 40s CW-OSL (90% power, 125°C, 10s pause) 
9 Repeat (1) through (8) for regenerative doses 
10 Calculate Lx/Tx from (4) and (8) 
 
Table 3: Modified SAR sequence used to remove 
ultrafast component. 1% power corresponds to 0.35 
mW.cm-2. 
 
little, if any, dependence on stringency of 
cutheat/preheat, making it unnecessary to use the 
same cutheat/preheat conditions if a preshine is used.  
The ultrafast component is most dominant in the 
lower temperature preheat/cutheat preshine decay 
curves (Figure 7b), as would be expected from the 
data in Figure 5 and the study by Jain et al. (2003).  
Therefore, unless removed by a preshine, an unstable 
ultrafast component will more strongly affect test-
dose measurements than regenerative-dose  

 
Figure 7: a) Sensitivity change as a function of 
cutheat and preheat temperature and cycle number.  
b) Preshine data (0.35 mW.cm-2 power) for the fourth 
cutheat and preheat cycle shown in Table 2. 
 
measurements, because generally a less stringent 
cutheat is used as opposed to preheat (Murray and 
Wintle, 2000). Jain et al. (2003) show that different 
OSL components do not always sensitize in the same 
manner. 
 
Application to OSL samples, glacial Lake 
Hitchcock  
Table 4 compares results for sample GLH-06-09-782 
for the conventional SAR procedure with results for 
the modified SAR with preshine procedure (Table 3); 
data are included for all aliquots (0 rejected, criteria = 
none), and for aliquots rejected if recycling or De 
errors exceed 10% (criteria = 10%, data in boldface 
type). The average percent absolute error on the 
recycling ratio and average percent error on the 
equivalent dose are tabulated in Table 4; other 
rejection criteria were also monitored (test dose error, 
decay curve characteristics, feldspar contamination, 
De > regenerative doses), but have not been tabulated. 
 
The conventional SAR procedure (Method: SAR) 
resulted in a large error on both tabulated criteria, and 
a large proportion of rejected aliquots (17 of 19 
rejected).  The preshine-SAR procedure (Method: ps-
SAR) reduced the errors on these rejection criteria, 
and resulted in a smaller proportion of rejected 
aliquots (6 of 25 rejected).  Finally, the conventional  

(a) 

(b) 
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 Rejected Average Average 
Method Aliquots (Criteria)a Recycling Ratio, (%)b De Error (%)c De (± 1σ)d

SAR 0 of 19 (none) 0.87 (19%) 15.22 34.44 ± 3.60 

R 

150-180µm) 
2

) 

SAR 17 of 19 (10%) 0.98 (3%) 6.10 21.86 ± 2.92 
ps-SA 0 of 25 (none) 0.96 (8%) 5.04 32.76 ± 2.83 
ps-SAR 6 of 25 (10%) 0.97 (5%) 4.35 29.83 ± 1.10 
ps-SAR ( 14 of 40 (10%) 1.01 (5%) 4.76 29.77 ± 1.22 
SAR, omit channel 1 0 of19 (none) 1.05 (13%) 2.93 23.13 ± 1.97 
SAR, omit channel 1 15 of 19 (10% 1.05 (6%) 3.18 29.53 ± 4.38 

 
Notes: 

ction criteria (none = no aliquots rejected, 10% = aliquots with recycling ratio and De error >10%); other rejection criteria were also 

Table 4:  OSL data for the Cushman Delta (GLH-06-09-782) sample.  Data selected/rejected using normal (i.e. 10%) rejection 

Sample # Lab # Method Aliquotsa Dose Rate De (± 1σ)b Age (ka) 

a:  Reje
monitored 
b: Average percent absolute error on the recycling ratio 
c: Average percent error on the equivalent dose 
d: 1 standard error 

 grains, unless otherwise noted 90-125 or 90-150µm
 

criteria are in boldface type.  Methods used are discussed in the text. 
 
 

DELT
Cushman Delta (strong ultrafast) 

2 of 19 2.02 ± 0.05 21.86 ± 2.92 10.8 ± 1.5 
R  

150-180µm)

DUNE DEPOSITS, < 14 kac

Hadley dune on lake bottom (weak ultrafast) 
11 1.47 ± 0.05 17.80 ± 1.49 12.1 ± 1.1 

R 

l cut into Montague delta (w t
8.16 ± 0.73 13.3 ± 0.8 

28 2.08 ± 0.06 25.74 ± 1.46 12.4 ± 0.9 

AIC DEPOSITS, 14-18 kac: 

GLH-06-09-782 UNL-558 SAR 
GLH-06-09-782 UNL-558 ps-SA 19 of 25 2.02 ± 0.05 29.83 ± 1.10 14.8 ± 0.8 
GLH-06-09-782 UNL-558 ps-SAR (  26 of 40 2.02 ± 0.05 29.77 ± 1.22 14.7 ± 0.8 
 

GLH-06-09-779 UNL-556 SAR 
GLH-06-09-779 UNL-556 ps-SA 21 1.47 ± 0.05 16.97 ± 0.81 11.6 ± 0.7 
GLH-06-09-781 UNL-557 ps-SAR 19 1.81 ± 0.06 19.51 ± 1.09 10.8 ± 0.8 
Montague echo dune on ear y terrace eak ultrafas ) 
GLH-07-03-89-3 UNL-554 ps-SAR 21 1.37 ± 0.04 1
South Hadley dune on Chicopee delta 
GLH-06-03-778 UNL-555 ps-SAR 

 
Notes: 

ot rejection based on De error, recycling ratio, test dose error, decay curve characteristics, feldspar contamination, De > regenerative 

om varve and radiocarbon chronology 
 

Table 5: Comparison of optical ages of samples from Glacial Lake Hitchcock determined using SAR and ps-SAR with a 1% 

a: Aliqu
doses 
b: 1 standard error 
c: Age constraints fr
ps-SAR:  SAR following a 3s 1 % power CW-OSL preshine
grain size is 90-125 or 90-150µm, unless otherwise noted 
 

diode power (0.35 mW cm-2) 3 s preshine.   
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SAR data were recalculated but channel 1 (0.17s; 
total power 31.5 mW.cm-2), which should contain the 
ultrafast component, was omitted (Method: SAR, 
omit channel 1).  This produced a data set with large 
errors on the De values and a large number of rejected 
aliquots (15 of 19 rejected). The large number of 
rejected aliquots is believed to be due to removal of 
not only the ultrafast component, but also a large 
proportion of the fast component from this low 
response sample. The De values determined using 
normal rejection criteria and the preshine-SAR (both 
90-150 and 150-180µm), and conventional SAR 
omitting channel 1 are almost identical, and differ 
significantly from the conventional SAR (channel 1 
included) of the data (Table 4). However, the 
preshine-SAR is the only technique which did not 
result in a large number of rejected aliquots. 
 
Samples from Glacial Lake Hitchcock were re-
analyzed using the modified SAR with preshine 
sequence (Table 3). Results are shown in Table 5.  
SAR dose rates were determined as outlined in 
Rittenour et al. (2003, 2005) using the cosmic dose 
rate equations of Prescott and Hutton (1994) and the 
dose rate conversion factors of Adamiec and Aitken 
(1998). Errors were calculated in quadrature using 
the methods of Aitken and Alldred (1972) and Aitken 
(1976, 1985). Only sample GLH-06-09-782 showed 
the presence of a strong ultrafast component, 
although a weak ultrafast component was detected in 
three other samples.  Using the SAR technique with a 
0.35 mW.cm-2 (1%) 3s preshine increased the 
determined age for sample GLH-06-09-782 by 4 ka, 
beyond the combined 1-sigma error bars.  
 
The ultrafast component in GLH-06-09-782 showed 
grain-size dependency, and was not detected in LM-
OSL studies of the coarser 150-180 and 180-212µm 
fractions, although subsequent preshine-SAR 
analyses showed it to be present as a minor 
component.  The coarser fraction was analyzed using 
the preshine-SAR method, with results which are 
consistent with preshine-SAR data from the 90-
150µm fraction (ps-SAR, Table 5).  The SAR with 
preshine ages for all samples are consistent with 
varve and radiocarbon age constraints from the lake 
basin (see below). 
 
Comparison of OSL ages to other age constraints 
Samples for OSL dating were collected from a high-
stand delta of Glacial Lake Hitchcock and several 
post-drainage sand dunes from the lake bottom, an 
early terrace and an abandoned delta surface.  These 
samples were carefully selected to bracket the timing 
of lake drainage within central Massachusetts.  
  

In addition to the fairly well-dated NE varve 
chronology (Ridge et al., 1999, 2001), the timing of 
ice retreat, duration of lake existence, and the timing 
of lake drainage in central Massachusetts are 
constrained by a varve-sequence core collected from 
the University of Massachusetts-Amherst campus 
(UMass core, Figure 1b) (Rittenour, 1999; Rittenour 
et al., 1999; Rittenour and Brigham-Grette, 2000).  
The UMass core extends to 32m depth below the lake 
bottom surface and covers a sequence of 1,389 varves 
that transition from thick pro-glacial varves 
immediately above bedrock to thin distal varves at 
the top of the sequence.  A radiocarbon age obtained 
from a sample collected near the top of the core (NE 
varves 5761-5768, 12,370 ± 120 14C yr BP, Beta 
124780; ~14.5 ± 0.5 cal ka using INTCAL04, Reimer 
et al., 2004) indicates that the UMass core covers the 
interval from 15.6 – 14.2 ± 0.5 cal ka, consistent with 
the chronology of Ridge et al. (1999).  Based on this 
core and the NE varve chronology, the ice margin 
retreated north of Amherst MA by 15.6 ± 0.5 cal ka 
(first varve deposited over bedrock) and Glacial Lake 
Hitchcock drained in this region sometime after 14.2 
± 0.5 cal ka (last varve deposited in core) (Rittenour, 
1999), providing a narrower time frame for the 
duration of lake existence in central Massachusetts 
than the entire length of the varve chronology (4000 
years).  
 
Assuming the UMass core chronology and the NE 
varve chronology are correct, deltas into Glacial Lake 
Hitchcock could only have formed after ice retreat 
from the region but before lake drainage (15.6-14.2 ± 
0.5 cal ka), and sand dunes on the lake bottom, early 
terraces and abandoned deltas could only have 
formed after the lake drained (after 14.2 ± 0.5 cal ka).  
The OSL ages obtained from the preshine-SAR 
method are consistent with these age constraints and 
indicate that topset beds from the Cushman Delta 
(GLH-06-09-782) are 14.7-14.8 ± 0.8 ka and sand 
dunes in the region formed between 13.3 ± 0.8 cal ka 
and 10.8 ± 0.8 ka (Table 5). 
 
Conclusions 
The following conclusions can be made with respect 
to the LM-OSL study of samples from Glacial Lake 
Hitchcock: 
 
1. Blue LM-OSL background is a rising curve 

modelled with a third-order polynomial.  Voltage 
applied to the stimulating LEDs is linear, within 
the error of the measurements. 

 
2. A strong ultrafast component present in sample 

GLH-06-09-782 from Glacial Lake Hitchcock 
was preferentially removed using a 0.35 mW. 
cm-2 (1%) power 3s CW-OSL sequence prior to 
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each OSL measurement in the SAR protocol. 
This produced a reduction in the ultrafast 
component similar to a stringent 300°C/20s 
preheat, but with much less relative reduction in 
the fast component. 

 
3. Differential sensitivity changes in the preshine 

data are observed as a function of stringency of 
cutheat and preheat.  This results in inappropriate 
sensitivity corrections in the conventional SAR 
procedure, since prior heating is different for 
regenerative and test doses.  This is reflected in 
problems with the recycling ratio and equivalent 
dose errors, and results in a large number of 
rejected De determinations based upon these 
criteria.  If a preshine is not used to remove the 
ultrafast, the cutheat and preheat conditions must 
be the same, as noted by Packman et al. (in 
press).  However, that will still lead to erroneous 
De values because of the presence of the 
thermally unstable ultrafast component in 
regenerative OSL data but its absence in the 
natural OSL data (Jain et al. 2003). 

 
4. The improvement in errors in calculated De and 

recycling ratio criteria using a preshine are due 
to the correction of the differential sensitivity 
change between test-dose and regenerative-dose 
data, whereas changes in the De values will also 
be due in part to removal of the unstable ultrafast 
from the regenerative dose as opposed to natural 
data.  The use of a preshine drastically reduced 
the rejection rate for De determinations. 

 
5. OSL curves measured subsequent to the preshine 

show no sensitivity dependency upon 
cutheat/preheat conditions (160°C/0s, 220°C/0s, 
240°C/10s, 260°C/10s).  

  
6. Optical ages determined using the SAR 

procedure with a preshine are compatible with 
varve and radiocarbon age constraints. 
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Abstract 
The luminescence effectiveness of alpha particles in 
silt-sized quartz originating from different regions in 
Europe and North America is presented. Single 
aliquot regenerative dose (SAR) protocols were used 
along with the a-value system. The study shows that 
a-values are independent of a sample’s origin, but 
dependent on the alpha- and beta-doses administered. 
Sensitivity changes induced by alpha-doses 
administered during a SAR procedure are not 
corrected by the beta dose induced test dose OSL. 
For samples displaying a linear beta-dose response an 
average a-value of 0.03 was found. For samples 
exhibiting exponential saturating beta-dose response 
the a-values determined are higher confirming the 
dose dependence of the alpha effectiveness in quartz. 
 
Introduction 
Quartz is widely used for optical dating. The use of 
its sand-sized fraction has become the preferred 
approach in the last few years as this grain size 
allows the analysis of dose distributions when a small 
number of grains are used per aliquot and when a 
single-aliquot regenerative-dose (SAR) protocol is 
applied. For this grain size, it is assumed that the 
treatment with hydrofluoric (HF) acid removes the 
outer rim of the grains which has been affected by 
alpha radiation in the natural environment. Thus, 
using sand-sized quartz for optical dating 
circumvents the need for determining the alpha dose 
and the alpha dose effectiveness. The silt-sized 
fraction (4 – 20 µm), however, receives the full alpha 
dose (α-dose) emitted in the thorium and uranium 
series and thus, the determination of the alpha dose 
and its luminescence effectiveness is required.  
 
To determine the alpha effectiveness of a sample, the 
a-value system (Aitken and Bowman, 1975) is 
commonly used. Whereas for feldspar silt-sized 
samples (“polymineral fine grain sample”) the a-
value has been determined in numerous dating 
studies (e.g. Lang and Wagner, 1997, Lang et al., 
2003), little work has been undertaken to determine 
the a-value of quartz. Given the relatively low a-

values measured for thermoluminescence, typically 
0.02 to 0.05 (Aitken, 1985a, p.262), and the mostly 
insignificant internal radioactivity of natural quartz, 
there have been few detailed analyses. Rees-Jones 
(1995) reported a-values of 0.032-0.043 for 4 
samples using additive alpha- and beta-dose response 
curves. Tribolo et al. (2001) for the first time used a 
SAR protocol to determine the alpha sensitivity of 
heated quartz. Dating studies (e.g. Stokes et al., 
2003a) have used a-values determined on one sample 
(a = 0.04) and adopted it for the remaining samples 
or adopted the a-values (e.g. Stokes et al., 2003b) 
reported by Rees-Jones (1995). It is likely that the 
luminescence sensitivity of natural quartz for alpha 
radiation varies little as long as the corresponding 
alpha- and beta-dose responses are linear. At higher 
doses, however, less luminescence is created per unit 
beta-dose; consequently, the contribution of the alpha 
dose to the total energy deposited increases. The 
saturation level for beta radiation is grain-dependent 
(Yoshida et al., 2000), and, thus, the a-value 
determined using relatively high alpha doses should 
be sample-dependent and less uniform than the a-
value resulting from lower doses. 
 
Our study aimed to test the applicability of a SAR 
protocol to determine a-values of natural fine-grained 
quartz particularly with respect to possible sensitivity 
changes if repeated alpha irradiation is needed. 
Furthermore, we wished to verify the hypothesis 
about the dose and sample dependence of the a-value. 
Silt-sized quartz samples from different areas in 
Europe and from North America were investigated. 
 
The alpha effectiveness and the a-value system 
Alpha particles in the U and Th decay chains have an 
energy spectrum ranging from 7.8 MeV to zero, 
where high energy particles travel as far as 47 µm in 
quartz (Aitken, 1985a, p.253) and affect around 10 
mg cm-2 (Brennan and Lyons, 1989). The mean 
absorbed dose fraction for alpha-particles is a 
function of grain diameter and decreases significantly 
with grains larger than 20 µm (Bell, 1980). Due to 
attenuation during travel through matter, the range 
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spectrum is approximately rectangular, i.e. there is 
the same number of alpha particles in each interval of 
range (Aitken, 1985a, p.253). Unlike beta- and 
gamma-radiation, the luminescence induced by α-
radiation is not proportional to energy deposited in a 
sample but approximately proportional to the total 
track length deposited and thus, to the travel range of 
the alpha particle (Brennan and Lyons, 1989). Since 
the energy deposited per track increases with track 
length (as the α-particle slows down) the 
luminescence signal induced in any particular grain 
by an α-particle is dependent on track length and not 
just on alpha energy (Brennan et al., 1991). The track 
length within a grain depends on the diameter of the 
grain. Thus, the alpha dose absorbed by a silt-sized 
quartz grain depends on the alpha particle travel 
range (grain diameter) and energy, whereas the alpha 
effectiveness depends on track length. The 
luminescence effects of an α-particle are limited to a 
small grain volume along the track (Zimmerman, 
1972) and consequently, α-particles induce less 
luminescence for a given amount of absorbed energy 
than ß-particles and γ-radiation. At higher α-doses 
tracks overlap and the spatial energy distribution 
effect of α-particles should disappear (Zimmerman, 
1972). Each alpha particle deposits energy only along 
a small stretch of its track whereas energy deposition 
by beta particles is not spatially constrained within 
the crystal. Therefore, at high doses α- and β-growth 
curves differ (Fig. 1) with the α-growth curve being 
linear until higher doses than the β-growth curve 
(Zimmerman, 1972). At doses close to saturation the 
energy distribution becomes uniform and the 
luminescence response to α- and β-doses becomes 
equal (Fig. 1). 
 
Commonly, the a-value system (Aitken and Bowman, 
1975) is used to correct the total α-dose rate 
calculated from the U- and Th-series for the α-
effectiveness. The crucial assumptions of the a-value 
system are: 
 

1. luminescence per unit track length is the 
same for all alpha particles independent of 
their energy 

2. luminescence per unit of absorbed energy 
from beta particles is constant and 
independent of the energy of the particle 

 
The first assumption allows for using a 
monoenergetic α-source (e.g. 241Am, 3.7 MeV) to 
monitor the α-effectiveness of a sample in the 
laboratory. By comparing the beta (or gamma) dose 
that would induce the same amount of luminescence 
as the alpha dose from this monoenergetic α-source, 
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Figure 1: Alpha- and beta dose response curves of 

two samples fitted to the equation )1( c
bx

eay
+

−
−×= . 

Each alpha dose point is based on the mean and 
standard deviation of 3 aliquots after normalisation 
to the natural OSL. The beta dose points are derived 
from a SAR measurement of one aliquot. (a) Sample 
exhibiting a very high natural dose (LV184); (b) 
sample exhibiting a high natural dose (LV05) 

(a) 

(b) 

 
 
independence of instrumental and sample sensitivity 
is achieved. Thus, Aitken (1985a, p.311) gives: 

 
 avs 13=

βχ
ξ

 
 

where ξsv is luminescence per unit alpha track length 
per unit volume and χß is luminescence per unit 
absorbed beta dose. The numerical factor is equal to 
the energy loss per micron for a 3.7 MeV alpha 
particle in quartz divided by the mass density 
(Aitken, 1985a). The factor was later considered to 
be an arbitrary value (Bowman and Huntley, 1984) 
derived from the transformation from the k-value, 
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which preceded the a-value system. Bowman and 
Huntley (1984) show that the ratio  

β
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T
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Figure 2: SAR protocol designed to determine the a-
value. The a-value results from the projection of 
Lα/Tβ onto the beta dose response curve obtained 
from a standard SAR protocol. For details see text. 

 

energybetaabsorbedunitperL
lengthtrackalphaunitperL
⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅  (L=luminescence) 

 
accounts for the beta energy that yields the same 
amount of luminescence as one unit length of alpha 
track. 
 
Material and experimental details 
The samples used here originate from the German 
North Sea coast (LV03, 04, 05, 06), the South 
German loess province (LV95, 96, 97), the English 
east coast (LV17), the English Lake District (LV104) 
and North America (LV176, 184). Samples were 
treated in the laboratory following conventional 
procedures for fine silt (4-20 µm) sample preparation 
(Mauz et al., 2002) and etched using 20% and 10% 
hydrofluoric (HF) acid for various durations to 
remove the feldspar-derived luminescence 
component (Mauz and Lang, 2004a). After etching 
the grains, silt from 4-15 µm was separated by 
settling in acetone. The aliquots of each sample 
consisted of 2 mg material pipetted onto 1 cm 
aluminium discs. All samples were tested using 
infrared stimulation (IR-OSL depletion ratio, Duller, 
2003) which examines the effect of the feldspar OSL 
component on the normalised OSL (Lx/Tx) and 
thermoluminescence (TL) measurements, which 
gives an estimate of the amount of feldspars 
remaining in the sample after chemical treatment 
(Mauz and Lang, 2004a, Shen et al., in press). 
According to these tests, all samples used for further 
experiments were pure quartz samples. 

 
LEDs emitting at 470∆30 nm (delivering ~30 mW 
cm-2). The OSL was detected through an optical filter 
(Hoya U340, 7.5 mm) transmitting 260 to 390 nm 
wavelengths. 
 
To determine the a-value, a SAR protocol was 
envisaged (Fig. 2). The ß-dose equivalent to a given 
α-dose should be determined by projecting the 
regenerated OSL induced by α-irradiation normalised 
to the OSL of a test dose induced by β-irradiation 
(Lα/Tβ) onto the sensitivity-corrected regenerated 
dose response curve generated by ß-irradiation. Three 
experiments were designed to test the reliability of 
this SAR protocol. In the first experiment the α-dose 
was given at the end of a standard SAR protocol. The 
second experiment adopted principles of the dose 
recovery test (Murray and Wintle, 2003). Aliquots 
were optically bleached (to remove the natural OSL), 
given an α-dose, and this was then treated as an 
unknown dose in the SAR protocol. For this 
experiment two naturally low-dosed samples (LV04, 
LV97) were chosen. The third experiment was 
conducted on aliquots previously used for Deß 
determination to investigate sensitivity changes. 
These were subjected to 7 cycles of alpha irradiation 
(~90 Gy per cycle, sample LV06), preheating and 
blue light stimulation. Alpha doses in the first two 
experiments were chosen to match the linear Lβ/Tβ 
growth and aliquots were rejected if the Lα/Tβ ratio 
did not fall in this range. 

 
All measurements were performed using an 
automated Risø TL/OSL reader equipped with an 
EMI 9635QA photomultiplier and a 40 mCi 90Sr/90Y 
β source, delivering ~0.09 Gy s-1 to fine grain quartz 
on aluminium discs (Mauz and Lang, 2004b). Alpha 
irradiation was performed in vacuum (10-4 mbar), 
using six 31.6 µCi 241Am sources delivering 3.7 MeV 
α-particles. The device was built by Bürgi (1992) 
following the design of Singhvi and Aitken (1978). 
The sources were calibrated using TLD 200 
dosimeters and cross-calibrated with alpha sources at 
the MPI Heidelberg (Bürgi, 1992). The six sources 
gave track lengths in the dosimeter between 0.1873 
µm-2 min-1 and 0.2209 µm-2 min-1. With respect to the 
energy deposition in quartz (Aitken, 1985a, p.135 
and p.312) these sources delivered doses of 
2.44−2.87 Gy min-1 on the calibration day (1.3.1991, 
Bürgi, 1992). These calibration dates were used here 
as the half life of 241Am is ~ 450 years. Optical 
stimulation  of  samples  was  performed  using   blue  

 
Samples showing a relatively high natural dose, and 
therefore requiring an exponential-saturating beta 
dose  response  curve  (indicated  as ‘exp’ in Table 1)  
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Sample Code (LV) Sediment (Origin) n fit Deβ (Gy) Deα (Gy) a-value 

06 coastal, North Sea (Germany)  14 linear 2.48±0.04 - 0.023±0.002 
03 coastal, North Sea (Germany) 10 linear 4.32±0.01 - 0.026±0.002 
04 coastal, North Sea (Germany) 6 linear 4.37±0.02 - 0.031±0.002 
104 lacustrine, (NW-England) 13 linear 2.5±0.05 - 0.028±0.002 
17 coastal, North Sea (Scotland) 7 linear 23.8±0.4 - 0.027±0.002 
96 loess derivate, (S-Germany) 12 linear 3.20±0.07 - 0.053±0.004 
95 loess derivate, (S-Germany) 10 linear 2.84±0.06 - 0.032±0.003 
97 loess derivate, (S-Germany) 6 linear 2.59±0.02 - 0.031±0.002 
176 Mississippi river (N-America) - exp 248±43 2378±72 0.104±0.018 
184 Mississippi river (N-America) - exp 203±14 1851±533 0.110±0.032 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1: The a-values of silt-sized quartz samples analysed in this study. n indicates the number of aliquots used in 
the SAR protocol to calculate the a-value, fit indicates the fitting procedure used to determine the Deβ of the sample 

(linear: y=ax+b; exp: )1( c
bx

eay
+

−
−×= ; Deβ is the equivalent dose obtained from a SAR protocol using β-irradiation; 

Deα is the equivalent dose obtained from a multiple aliquot additive dose (MAAD) protocol using α-irradiation. 
 
 

Sample code (LV) n Given α-dose 
(Gy) 

Recovered ß-
dose (Gy) 

Recycling 
ratio 

a-value a-value 
ratio 

04 6 122±8 4.02±0.17 1.03±0.03 0.033±0.002 0.94±0.08 
97 6 56.8±3.7 1.76±0.06 0.97±0.02 0.031±0.002 1.00±0.09 

 
Table 2: The a-values of two samples determined using a dose recovery SAR protocol. A given α-dose is recovered 
by a SAR protocol based on ß-irradiation. The a-value ratio is the ratio between the a-value determined with the 
alpha irradiation at the beginning of the SAR protocol and the a-value determined with the alpha irradiation at the 
end of the SAR protocol. 
 
were measured with a multiple aliquot additive dose  
(MAAD) protocol. Between three and five different 
additive alpha doses were administered and a Deα was 
determined by extrapolating the dose response curve 
to the dose axis. The a-value of a sample then results 
from the comparison of Deβ and Deα. 
 
Preheat temperatures were chosen on the basis of 
results from a preheat test and were 200°C, 220°C 
and 230°C for 10 s for low dose samples (indicated 
as ‘linear’ in Table 1) and 260°C for 10 s for high 
dose samples (indicated as ‘exp’ in Table 1). The cut 
heat was always 200°C, the test dose size was ~ 10% 
of the expected natural dose and the OSL was 
stimulated for 40 s at 125°C. All a-values obtained 
from a SAR protocol were determined as arithmetic 
mean and standard deviation of n values per sample 
(for n see Table 1 and Table 2). Assuming a normal 
and log-normal distribution of doses, a small number 
of aliquots was investigated per sample. 
 
 
 

Results and discussion 
The results of all measurements are listed in Table 1 
and 2. From the first experiment, a-values ranging 
from 0.023 to 0.053 were determined (Table 1). 
Samples with linear beta dose responses gave an 
average a-value of 0.029±0.003 (LV96 has been 
excluded from this average a-value). The relative 
standard deviation (RSD) of 11% of this average 
does not originate from differences between regions, 
but seems to be sample-dependent as shown by 
LV96. The a-values of the second experiment are 
0.033 and 0.041 (Table 2) and, thus, the a-value of 
samples with low doses seems to be independent of 
the measurement protocol. If the OSL-signal induced 
by a beta dose (Tß) corrects Lα for sensitivity 
changes, the relationship between Tß and Lα should 
be proportional and the regression line should pass 
through the origin. 
 
Figure 3(a) shows that the relationship is proportional 
for some aliquots only and that the regression line  
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Figure 3: Results from the sensitivity change test 
shown by sample LV06. Data were obtained using the 
protocol described in Figure 2, but using repeated 
alpha doses. An alpha regeneration dose of ~ 90 Gy 
was administered for 7 cycles (beta test dose was ~ 4 
Gy). (a) Plot of Tß versus Lα; linear fitting was 
applied to the data set of each aliquot. (b) the a-
values of the 4 aliquots of each alpha regeneration 
cycle normalised to the a-value of the first cycle. 

(a) 

 
does not always pass through the origin (sample: 
LV06). This inter-aliquot discrepancy is reflected by 
the ~ 8% relative standard deviation of the SAR-
derived a-values (Table 1). Moreover, Figure 3(b) 
shows that the a-value determined from constant 
alpha regeneration doses is affected by these 
sensitivity changes. Details plotted for one aliquot of 
the same sample indicate that the Tß-OSL and the Lα-
OSL behave differently with each cycle (Figure 4). 
Sensitivity changes induced by alpha irradiation are 
not sufficiently monitored by the Tß-OSL and, 
consequently, aliquots to be used for a-value 
determination should be irradiated only once. 
 
The a-value of samples showing a relatively high 
natural dose was determined by comparing Deβ and  
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Figure 4: Detail of the sensitivity test illustrated in 
Figure 3(a). Lα and Tß of aliquot 1 (LV06), 
normalised to the first cycle are plotted separately 
against cycle number. 

(b) 

 
Deα. This comparison resulted in a-values of around 
0.1 (Table 1). This value, however, is poorly 
constrained as it is based on the results from only two 
samples out of 10 samples analysed. The 8 other 
samples (not shown here) showed scattered dose 
response curves which could not be extrapolated. We 
believe that this is largely derived from large errors 
of individual dose points due to inappropriate 
experimental conditions (alpha source is not mounted 
on the luminescence reader but external). 
Nevertheless, the a-value of ~ 0.1 indicates that the a-
value is dose-dependent. However, this result was 
obtained from adding charge induced by mono-
energetic alpha particles to charge induced by alpha- 
and beta-particles and gamma photons. The different 
spatial distribution of charge resulting from alpha 
dose compared to beta and gamma radiation results in 
different dose response curves and, thus, this additive 
dose protocol is actually not accurate if the natural β-
dose was relatively high. Aitken (1984) showed that 
the De is likely to be overestimated if a significant 
alpha dose is added to a beta dose which induced a 
non-linear OSL behaviour. 
 
Conclusion 
The a-values determined in this study range from 
0.023 to 0.053 for samples with linear dose response. 
These are in agreement with a-values determined by 
additive dose protocols (Rees-Jones, 1995). Given 
the low α-effectiveness and apparent independence 
of sample origin, we conclude that a-values of 0.03 
can be assumed for samples displaying a linear beta 
dose response curve allowing for an uncertainty of 
around 10%. With respect to the difference how 
alpha- and beta-particles deposit energy in silicates, 
comparison between regenerated alpha- and beta-
doses could always be performed for low doses. We 



52                                                                                                                                                                        Ancient TL Vol. 24 No.2 2006 

further found in this study that sensitivity changes 
induced by alpha dose are not corrected by the beta 
dose induced test dose OSL and thus, aliquots should 
not be regenerated with alpha-doses but irradiated 
only once. The comparison between Deβ and Deα 
indicates that the alpha effectiveness of quartz 
increases with increasing dose. 
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  The origin of arroyo cut-fill epicycles has been the 
subject of debate for over a century in the American 
southwest. Whilst it is now acknowledged that a 
variety of causal factors can control arroyo dynamics, 
there are still many outstanding research issues 
concerning the fundamental cause-effect relationships 
responsible for arroyo epicycles. This thesis aims to 
develop a better quantitative understanding of arroyo 
cut-fill dynamics and causality using a combination 
of optically stimulated luminescence (OSL) dating 
and computer modelling. The results of the 
chronological and modelling analyses are combined 
together to provide detailed reconstructions of 
alluvial histories within a large southern Californian 
arroyo system (the Cuyama River Valley) and four 
smaller arroyo systems located across southeastern 
Colorado. 
 
  An integral part of this research involves testing and 
demonstrating the suitability of single-grain/single-
aliquot quartz OSL dating techniques in an ephemeral 
fluvial context. A series of simulated fluvial dose 
distributions and known-age empirical samples are 
analysed to formulate objective strategies for 
identifying and characterising heterogeneously 
bleached samples. These datasets are subsequently 
used to develop statistical decision procedures 
capable of informing the selection of appropriate ‘age 
models’ for burial dose estimation. 
 
  Computer modelling simulations conducted on a 
small, semi-arid ephemeral catchment demonstrate 
the potential for arroyo cut-fill epicycle occurrence in 
the absence of any precursory external climatic 
forcing. These modelling results provide process-
based evidence for the existence of intrinsic arroyo 
control mechanisms and support the hypothesis that 
channel cutting and filling is a fundamental, natural 
process in ephemeral catchments. A series of 
additional modelling investigations are undertaken to 

systematically evaluate how ephemeral basins of the 
American southwest might have responded to 
climatic events during the late Quaternary. These 
sensitivity tests demonstrate that it is too simplistic to 
conceptualise arroyo epicycles in terms of mean 
precipitation shifts; the key to understanding arroyo 
behaviour from a climatic perspective lies with a 
more complete consideration of individual climatic 
parameters such as rainfall intensity, frequency, 
duration and seasonality. 
 
  The complex relationship between climate change 
and arroyo formation is particularly evident in the 
reconstructed alluvial histories of the southeastern 
Colorado arroyo systems. In the Cuyama River 
Valley, climate appears to have controlled arroyo 
dynamics both directly and indirectly through a 
complex interplay with, and conditioning of, 
hydrology, hillslope processes and vegetation 
dynamics. 
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  The present thesis investigates whether certain 
geological natural minerals, such as quartz (SiO2) 
and/or natural calcium fluoride (CaF2:N), could be 
effectively used as Time – Integrating Luminescence 
Detectors for setting bounds on interaction’s strength 
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of dark matter particles with ordinary matter. The 
limitations imposed by the background of cosmic 
radiation as well as environmental radioactivity are 
investigated, and initial limits for the interaction 
strengths with ordinary matter, and the mass of 
Weakly Interacting Massive Particles (WIMPs) and 
axions are derived. The Optically Stimulated 
Luminescence (OSL) properties of the natural 
calcium fluoride are studied, indicating it as the most 
suitable phosphor, for the proposed method, mainly 
due to its extremely low detectable dose threshold. 
The effective application of the retrospective 
dosimetry’s working principle in deep sea sediments 
is also indicated, using a deep sea sediment core 
collected from the operational site of the NESTOR 
experiment, 14 km off the South – West Coast of 
Peloponnesus, at a depth of almost 4 km. Therefore, 
the use of quartz from deep sea sediments is proposed 
as well, mainly due to the shielding provided by 
water from cosmic rays. Finally, the possibility of 
using the pre-dose technique protocol in the OSL 
signal is studied by taking advantage of the 
sensitization of its second component. 
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The recent discovery of a late-surviving new human 
species, Homo floresiensis, in western Flores has 
accentuated our lack of understanding of the history 
of the genus Homo in Asia and of the environmental 
challenges that may have influenced these hominins. 
Western Flores contains a wealth of archaeological 
and palaeoanthropological material with far-reaching 
implications for human evolution and for Indonesian, 
Australian and world archaeology. But the 
interpretation of this evidence has been hindered by a 
limited Quaternary context and age control for 
complex stratigraphies in a region of great geological 
instability and widespread environmental change. 
 
Liang Bua in western Flores is a key site in the 
Indonesian archaeological record, providing evidence 

of cave occupation by Homo floresiensis and Homo 
sapiens, and human evolution and dispersal on the 
eastern side of Wallace’s Line. In this study, 
archaeologically-relevant information has been 
gleaned from an interdisciplinary approach to the 
analysis of this site, and has established the timing of 
key events, such as the first exposure of the cave and 
the nature of, and influences on, human occupation of 
the cave. This approach incorporated studies of 
landscape evolution, river terrace and cave 
development, sedimentology of cave sediments, 
palaeoclimate signals in speleothems, and a dating 
strategy utilising novel approaches to luminescence 
dating.  
 
The research reported here provides a chronological 
and environmental backdrop to the human occupation 
of Liang Bua. A maximum age of cave occupation is 
shown to correspond to the time of cave exposure 
(~190 ka), which also represents a minimum age for 
the human habitation of the area. In addition, this 
study has established an age range for the occupation 
of the cave by Homo floresiensis (95–11 ka), the time 
of the most intensive phases of occupation (74–61 
and 17–11 ka), the depositional age of the holotype 
skeleton (36–14 ka), and the age of the oldest human 
skeletal remains found on Flores (95–74 ka). Through 
the integration of techniques, a framework for terrace 
development and landscape evolution has been 
developed to establish the Quaternary setting in 
which the cave was formed and evolved. These 
techniques have also defined a sequence of 
geomorphological and sedimentological changes in 
the cave, enabling the reconstruction of the 
occupational environment. At least two zones of 
occupation have been identified: a zone established 
~74–61 ka, and a later zone established ~18 ka.     
 
The environmental backdrop for the arrival and 
dispersal of humans throughout Indonesia has been 
established via a palaeoclimatic and 
palaeoenvironmental analysis of speleothem records. 
These records contain evidence of multiple wet 
phases (110–98, 82–65, 49–39 and 17–5 ka) and a 
flourishing fauna. The timing of these wet phases 
correlate with evidence for channel and flowstone 
formation, episodic erosion events, and the most 
intensive periods of occupation in the cave. There is 
also evidence for a prolonged period of reduced 
rainfall (36–17 ka) in an organic-poor environment, 
the timing of which correlates with evidence of 
reduced erosion, pooling and less intense occupation. 
These correlations suggest that the occupational 
success of Homo floresiensis in this area was related 
to the contemporaneous environmental conditions, 
which, combined with the evidence for at least two 
volcanic events (one of which may have forced 
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human migration), establish a link between hominids 
and their environment. 
 
The results of this research indicate the value of using 
an interdisciplinary approach to investigate and 
interpret archaeological sites in Southeast Asia. By 
providing an environmental and chronological 
context for important archaeological finds, we can 
develop a better understanding of the prehistory of 
Homo in Asia. 
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Letters 
____________________________________________________________________________________________ 
 
Thoughts arising from “Choi, Duller and Wintle: Analysis of quartz LM-OSL 
curves. Ancient TL 24, 9-20 (2006)” by D.J. Huntley  
 
Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada 
(Received 2 August 2006) 
 
 
1) The authors indicate that the linear-modulation 
(LM) method gives a “more effective and accurate 
characterization” of each component. There is room 
for discussion on this matter. LM provides no more 
information than one obtains using constant 
excitation. One can readily transform data obtained 
using constant excitation to that obtained using LM 
excitation (excitation power increasing linearly with 
time), or any other time-dependent excitation. The 
attractive feature of LM excitation is that the 
emission intensity displays one or more peaks which 
are much more interesting to look at than a steadily 
decaying curve, and it may well be easier for the eye 
to see different components. Nevertheless any 
analysis of the data taken either way should produce 
the same results. 
    Using constant excitation power takes less 
measurement time and the background is expected to 
be constant (unless the emission from the diodes is 
changing), thus leading to a simpler experiment. The 
mathematical transformation is readily accomplished 
with a computer and could be performed while the 
data are collected. 
    The above comments are predicated on the 
assumption that the emission per unit incident flux is 
a function of the total incident flux to that point, and 
not on how that incident flux was distributed in time. 
A special case of this is when the emission arises 
from a sum of several 1st-order decays. The 
assumption will not be valid if the excitation cross-
section depends on excitation power, which seems 
unlikely to be significant. The assumption will not be 
valid if there is significant retrapping and re-
excitation on the time scale of the measurement; this 
is a substantial concern. One method of detecting this 
is to switch the excitation off, wait, and switch it on 
again; if the emission intensity is different when the 
excitation is switched on then the assumption is not 
valid. An example of this can be found in Aitken and 
Smith (1988, Figure 2). An alternative way of testing 
the assumption is to analyze LM data and constant-
excitation data for the same sample; if the results are 
different then the assumption is not valid; Kuhns et 
al. (2000) provide an example of this.  

2) Figure 1a showing background data that is not 
increasing linearly with excitation power is very 
worrying, as the authors recognize. They suggest that 
it arises from the emission spectrum of the diodes 
changing as the power is increased, with a resulting 
change in the portion of the scattered excitation 
photons passing through the filters. If this is true then 
there will also be a significant change in the 
excitation cross section because that is exponentially 
dependent on the photon energy (e.g. Huntley et al., 
1996). This may well be sufficient to invalidate the 
analyses. 
 
3) There is a problem I have mentioned before in 
Ancient TL in connection with using blue LEDs. This 
is Raman scattering of excitation photons from the 
sample, the sample holder, and from anything else 
that the incident photons may scatter from into the 
detector. The closer in energy that the excitation 
photons are to the pass band of the measuring system 
the worse this problem will be. As well, Raman 
scattering increases exponentially with sample 
temperature and it is expected to be sample 
dependent. I have seen nothing in any paper 
addressing this issue. I expect it to be significant for 
the usual measurements on quartz. For this reason I 
favour the use of green LEDs until someone proves 
that Raman scattering of blue photons by quartz is 
not significant. Examples of Raman scattering from 
feldspars and zircons can be found in Huntley et al. 
(1989) and Godfrey-Smith et al. (1989) respectively. 
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Conference Announcement  
 

 
UK Luminescence and ESR 

Meeting 
 

Department of Geography  
University of Sheffield 

 
 

 

 
 

12-14th
 September 2007 

 
 

 

 
The annual UK Luminescence and ESR dating 

research meeting will be held at the University of 
Sheffield from the 12-14th September 2007. This 
meeting will be of interest to luminescence dating 
specialists, Quaternary geologists, archaeologists, 
dosimetric scientists and some physics researchers by 
providing an opportunity to discuss the latest research 
in trapped charge dating and related work. 
Presentations covering basic physics, methodological 
issues and the application of these techniques are all 
welcome. The meeting will consist of both oral and 
poster presentations, and presentations by research 
students are especially encouraged.  

 
For further information send an e-mail to: 

Luminescence@sheffield.ac.uk or visit the University 
of Sheffield Geography department website at 
http://www.shef.ac.uk/geography/
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Notice  
 

 
  It is with sadness that we note the passing of 

Professor W.F. Hornyak on 17 August 2006.  
 
Bill had a career as a nuclear physicist, but in his 

later years he was interested in aspects of nuclear 
science applied to archaeology. He set up a TL 
laboratory in the Physics Department of the 
University of Maryland and established a long-
standing working relationship with Professor Alan 
Franklin, publishing several papers on TL and OSL 
of quartz. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 


