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Abstract
Geochemical conditions (e.g., pH-value, tem-
perature, availability of CO2) in carbonate-rich
sedimentary environments lead to cementation
processes, i.e., air or water in the pore space are
substituted by mineral phases. Consequently, in
such environments the conventional formalism
of estimating the environmental dose rate from
U, Th and K concentrations (pores are filling by
air or water) cannot be overall correct. In 2008,
Nathan & Mauz (2008) presented a model to
account for dose-rate changes occurring when
carbonate minerals replace air and water in
the pore space between mineral grains. The
underlying MATLAB R© code (Carb) was later
published by Mauz & Hoffmann (2014). Here
we present an implementation of this tool using
the statistical programming environment R.
Our implementation does not alter the under-
lying model and its assumption but comes with
an updated code basis published as R package
under GPL-3 licence conditions.

Keywords: Luminescence dating; Dose rate; R

1. Motivation
Over the last decades the luminescence dating commu-

nity has developed various software tools (cf. Kreutzer et al.,
2017) to facilitate automised analytical workflows and pro-
cessing of data from samples originating from sedimentary
environments that underwent post-depositional changes with
consequences for the dose-rate estimation. Some of these
tools are likely to be used only occasionally, but nevertheless

carefully collected and archived for the moment when they
are needed. In contrast to good Bordeaux wine, sadly, soft-
ware does not mature with age: Software that had worked
perfectly in the past eventually renders itself unusable when
needed. It was such an event that revealed the need for the
creation of ‘RCarb’ (Kreutzer et al., 2019).

At the IRAMAT-CRP2A in Bordeaux, we processed
carbonate-rich sediment samples using routine luminescence
dating techniques (e.g., optically stimulated luminescence,
Huntley et al., 1985), for which the ages were not in strati-
graphic order. We hypothesised that this was caused by the
replacement of pore water by carbonate minerals, which pro-
motes dose-rate changes through time. To test this hypothe-
sis, the work by Nathan & Mauz (2008) and Mauz & Hoff-
mann (2014) and the published MATLAB R© software Carb
seemed to offer a convenient starting point without the need
to run a full simulation in DosiVox (Martin et al., 2015),
which would be further complicated by the assumed post-
depositional dose-rate alterations. Problems with running the
code in an updated version of MATLAB R© motivated us to
translate it into R (R Core Team, 2019) and deploy it to the
trapped-charge dating community as R package; henceforth
named ‘RCarb’. The implementation of ‘RCarb’ aimed at:

• Providing a version of Carb based on open-source soft-
ware and published under GPL-3,

• updating and refitting the code basis to extend its avail-
ability to the community by another 5 to 10 years,

• supplementing Carb with an updated documentation of
the code for developers as well as for end-users to facil-
itate the usage of the software,

• enabling future, community driven, developments by
using the open-source repositories such as GitHub
(https://github.com).
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In the following, we outline the main implementation as-
pects of ‘RCarb’ and provide R code snippets (typed in
monospace letters). Carb was designed to model dose rate
through time for quartz grains > 100 µm. Typically, these
grains are etched in concentrated HF and, thereby, the exter-
nal α-dose contribution is removed (Fleming, 1966, 1970)
and does not need be considered for the modelling. How-
ever, not in all cases an etching of the grains is feasible or
desired (e.g., a limited amount of material). To be able to
consider the full radiation field for special sample cases, we
additionally discuss the impact of α-radiation on the dose-
rate modelling, simulated for grain diameters of 4 µm and
250 µm.

2. Implementation
The original MATLAB R© program (Mauz & Hoffmann,

2014, their supplement) consists of 51 individual files in
a single folder. These files represent the code necessary
to run the model and to provide a graphical user interface
(GUI). The files further comprise reference and example
data, tests scripts and cached graphical and numerical output.
MATLAB R© and R are both numerical computation environ-
ments which mainly evaluate code during runtime. With
some knowledge of the syntax differences, MATLAB R© code
can be translated easily into R. However, translating non-
R code into a full R package requires substantial effort to
meet the basic requirements of the Comprehensive R Archive
Network (CRAN, https://cran.r-project.org) which
is the central R package repository. In the following, we de-
tail the implementation of Carb in ‘RCarb’ to provide a bet-
ter understanding of the package structure and to highlight
similarities and differences between the two programs.

2.1. Central premise and code structure
‘RCarb’ was designed with the intention to keep the orig-

inal code recognisable, notwithstanding more efficient or el-
egant solutions would exist in R. The names of variables
as well as large parts of the code structure remained almost
identical to that presented in Nathan & Mauz (2008); Mauz
& Hoffmann (2014). Basic MATLAB R© functions were re-
placed by R equivalents and, consequently, a new syntax had
to be adopted. Comments were added where they appeared
to be necessary for the understanding of the code. Likewise,
the code structure (Fig. 1) was modified and broken down
into separate functions. Three of these functions are for in-
ternal use only and not accessible by the user (see below).

2.2. Reference and example data
In a first step, the file structure was reorganised to meet the

CRAN R package requirements. Reference data, which are
(1) water/carbonate correction factors for β and γ-radiation
after Nathan & Mauz (2008), (2) β -dose attenuation factors
after Mejdahl (1979), (3) and example data taken from Mauz
& Hoffmann (2014), were imported into R and integrated as
package (example) data. In the R terminal they are now ac-

model_DoseRate()

write_InputTemplate()

Visible functions

.calc_DoseRate()

.rad_pop_LU()

.griddata()

Internal functions

Package datasetsDB

1 0 1 0 1 0 0

0 1 0 1 0 1 0

1 0 1 0 1 0 0

1 1 1 1 0 1 0

  

RData

1 0 1 0 1 0 0

0 1 0 1 0 1 0

1 0 1 0 1 0 0

1 1 1 1 0 1 0

  

RData

1 0 1 0 1 0 0

0 1 0 1 0 1 0

1 0 1 0 1 0 0

1 1 1 1 0 1 0

  

RData

Reference_Data

Example_Data
1 0 1 0 1 0 0

0 1 0 1 0 1 0

1 0 1 0 1 0 0

1 1 1 1 0 1 0

  

RData

DATAek

DATAet

mejdahl
1 0 1 0 1 0 0

0 1 0 1 0 1 0

1 0 1 0 1 0 0

1 1 1 1 0 1 0

  

RData DR_conv_factors

Figure 1: The threefold structure of the R package ’RCarb’. In
its current state, the package has only two visible functions. Addi-
tional internal functions (e.g., .calc DoseRate()) are not meant
for user interaction. These functions are not displayed to the user
and they show no documentation (but are supplied with comments
in the code). Package datasets are (1) reference data needed for the
calculation, e.g., mejdahl, which refers to the β -dose attenuation
dataset published by Mejdahl (1979) and (2) example datasets from
Carb. For further details see main text.

cessible via, e.g., data(Example Data). Additionally, ap-
propriate documentation was added for the reference as well
as the example data. The reference data are used extensively
by the internal functions, while the example data serve as test
dataset to the user.

2.3. The modelling core
The second step consisted of a line by line translation

of the MATLAB R© code and removal of unused code lines.
Carb is started in MATLAB R© by executing carb 2007a.m

which then internally calls the files daterlu1.m and
rad pop LU.m. Other files, e.g., those preceding with the
word ’test’, are not needed to run the program and have
been removed. In ‘RCarb’, the internal workhorse func-
tion is called .calc DoseRate() and it is based on the file
daterlu1.m from Carb. The function rad pop LU() is the
R equivalent of rad pop LU.m and .griddata(), and pro-
vides a match to the MATLAB R© function griddata for the
interpolation of irregular gridded data. Actually, an equiva-
lent does not exist in base R so that we had to implement the
package ‘interp’ (Gebhardt et al., 2019). All three func-
tions are not exported, i.e. they do not appear in the help
page index and are not directly visible to the user.1 The new

1Such internal functions in R packages mainly serve the package de-
velopers and do not usually provide a documented interface. Although
such functions can still be called, e.g., RCarb:::.calc DoseRate(), they
should not be employed by the user without having a profound reason
(and knowledge). Besides, CRAN itself does not allow calling such “non-
exported” functions from inside other packages.

2
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entry point for the user is the function model DoseRate().
This function has a full documentation and provides termi-
nal and graphical output very similar to Carb (see Sec. 3 for
examples).

2.4. Graphical user interface and miscellaneous
In a third step, the MATLAB R© code providing the GUI

was removed. This code only works in MATLAB R© and can-
not be translated easily into R. As a consequence, ‘RCarb’
is light-weighted, uses base R syntax and does not depend
heavily on other R packages. The reduced overhead may
simplify and encourage the code inspection by others. How-
ever, to improve the usability, in particular for users not fa-
miliar with R, we provide a new (separate) GUI to ‘RCarb’

through the R ‘RLumShiny’ package (Burow et al., 2016,
2019) (cf. Fig. 3, see below).

In the last step, code example and reference data were
compiled as R package and submitted to CRAN. Al-
though ‘RCarb’ does not depend on other packages of the
‘RLum’ family (e.g., ‘RLumShiny’), it is hosted and de-
veloped through the same version control hosting service
GitHub (https://github.com/R-Lum/RCarb). Thereby,
‘RCarb’ benefits from established development workflows
and testing routines ensuring robust and smooth execution on
the three major platforms (Windows R©, Linux

TM
, macOS R©) as

detailed by Kreutzer et al. (2017).

2.5. Enhancements and code modifications
Besides code structure alterations required by the trans-

lation from MATLAB R© to R, two additional modifications
slightly changed the calculation output in comparison to
Carb. The first difference concerns a bug: In case values
for 238U and 234U/238U activity ratios were provided, erro-
neously the same water correction factor (for the concept of
those factors cf. Zimmerman, 1971) applied to correct the β -
dose rate was also used for the γ-dose rate. ‘RCarb’ now
applies the correct factors, i.e. the β -dose correction factors
to the β -dose rate and the γ-correction factors to the γ-dose
rate.

The second modification relates to the dose-rate conver-
sion factors. The latest version of Carb uses dose-rate con-
version factors downloaded from the ENSDF database as
of January 16, 2002 (Roger Nathan, personal communica-
tion, July 24, 2019; archived database versions available
at http://www.nndc.bnl.gov/ensarchivals/). These
factors are slightly different to published values used by the
trapped-charge dating community (e.g., Adamiec & Aitken,
1998). Considering the overall uncertainties of the dose-
rate modelling for carbonate-rich samples, the differences
are, however, negligible. Nevertheless, to provide a consis-
tent and up-to-date approach, ‘RCarb’ supports, on top of
the dataset from Carb, now named ’Carb2007’, the selec-
tion of dose-rate conversion factors published by Adamiec
& Aitken (1998), Guérin et al. (2011), and Liritzis et al.
(2013). These datasets are part of the package refer-
ence data (cf., Reference Data, Fig. 1). The default set-

ting is ’Carb2007’ to yield modelling results consistent
with the original Carb. To see the implemented datasets
type RCarb::Reference Data$DR conv factors in your
R terminal.

3. Running examples
Before outlining two examples for how to run ‘RCarb’

in the R terminal, we wish to remind the reader that these
software examples can provide only a first impression. The
manuscript remains static, while ‘RCarb’ may evolve. Con-
sequently, our examples are kept short and we point the
reader to the always up-to-date HTML-document shipped
alongside the package (a so called ‘vignette’) via CRAN.

3.1. Example 1 - example dataset
Users who are not familiar with R should first look at

the example section in the package manual. It provides a
good start (type ?model DoseRate in the R terminal) and
‘RCarb’ includes the example data of Carb. The code lines
in listing 1 first load the package itself before loading the ex-
ample data into the working environment. Subsequently, line
6 (listing 1) calls row 14 from the table with the example data
(without modifying the function arguments). This example is
similar to the one shown in Mauz & Hoffmann (2014) (their
Fig. 4).

Listing 1: Running ‘RCarb’ using the package example
dataset.

1 ##load example data and example data

2 library(RCarb)

3 data("Example_Data", envir = environment())

4

5 ##model dose rate for sample LV107

6 model_DoseRate(data = Example_Data[14,])

The terminal and graphical output (Fig. 2) is very similar
to the one provided by Carb. Our example output (listing 2)
shows that the conventional age calculation, i.e. without con-
sidering the pore filling by carbonate, overestimates the age
by ca 15 %.

Listing 2: Typical ‘RCarb’ terminal output.
[model_DoseRate()]

Sample ID: LV107

Equivalent dose: 53 ± 2 Gy

Diameter: 215 µm

MC runs error estim.: 100

--------------------------------------------

Age (conv.): 149.73 ± 10.667 ka

Age (new): 130.642 ± 7.754 ka

Dose rate (conv.): 0.354 ± 0.018 Gy/ka

Dose rate (onset): 0.499 ± 0.027 Gy/ka

Dose rate (final): 0.361 ± 0.017 Gy/ka

--------------------------------------------

3
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3.2. Example 2 - own dataset
Using own data requires the replacement of the input

data (in listing 1: data = Example Data[14,]) by an own

data.frame. Because this particular user interaction likely

increases the chance to crash the function and then becoming

a frustrating experience, we aimed at minimising the proba-

bility of such events. In the next example (listing 3), after

loading ‘RCarb’, the function write InputTemplate()

first generates a template CSV-file (if the argument file is

left blanc, a template data.frame is returned to the R ter-

minal). The CSV-file can be filled easily with every spread-

sheet software (e.g., Excel R©) and re-imported into R (code

lines 9–12). In the final call of model DoseRate(), data =

Example Data[14,] it is replaced by data = own data.

The subsequent calculation does not require user interaction

but may take a while.

Listing 3: Working with own data.

1 ##load package

2 library(RCarb)

3

4 ##write template CSV

5 write_InputTemplate(

6 file = ’YOUR PATH/MyData.csv’)

7

8 ##import after filled with external program

9 own_data <- read.table(

10 file = ’YOUR PATH/MyData.csv’,

11 header = TRUE,

12 sep = ’,’)

13

14 ##run model

15 model_DoseRate(data = own_data)

3.3. Remarks
If the input table has more than one row,

model DoseRate() automatically iterates over all rows,

i.e. multiple samples. Entries leading the function to fail

are skipped and removed from the output. The uncertainties

are estimated using a resampling approach similar to Carb.

By default, the function uses 100 Monte Carlo (MC) runs

(argument n.MC). More MC runs likely increase the quality

of the error estimate but also the computation time.

4. Limitations and further considerations
Carb (and so ‘RCarb’) does not model the dose-rate ef-

fect of α-radiation. Instead, Carb was written to model post-

depositional dose-rate alteration by which the sediment is

subject to gradual infilling of carbonate in the pore space.

Within the range of sedimentary deposits suitable for lumi-

nescence dating, those containing sand-sized components are

most likely to be affected by this process. As a consequence,

Carb was designed for sand-sized quartz grains and these

are usually treated with HF (cf. Porat et al., 2015; Duval

et al., 2018, for recent discussions) in order to remove the

●

Figure 2: Graphical output of ‘RCarb’ for a sample from the

example dataset (here: HD107, which corresponds to the sample

LV107 shown in Mauz & Hoffmann 2014, their Fig. 4).

The upper plot reads from right to left and displays the dose-rate

evolution over time with t0 the burial time, tm0
the inset of the

cementation and tm1
the completion of the cementation. The grey

shaded error indicates the error margins determined by MC runs.

The dashed blue line provides a quality measure for the number of

the MC runs. If the dashed blue line closely matches the solid line,

the number of MC runs have been sufficient. Please note that the

match will be never perfect.

The lower plot shows the absorbed dose over time indicating

the resulting age (red lines). Dashed lines and grey shaded area

indicate error margins. The superlinear evolution of the absorbed

dose is a consequence of the modelling and no display error.

α-radiation affected outer rim of the grains. However, what

can we do with a sample that has not been etched?

The travel range of (natural) α-particles in silicate-rich

sediments is a few micrometres so that only those grains

situated in close vicinity to the emitter receive an external

α-dose. If the pore space between the grain and emitter,

typically occupied by air or water, is gradually filled with

carbonate instead of air or water, the α-dose changes over

time. Therefore, we provide additional information on the α-

correction factors needed to estimate the environmental dose

rate and calculate the luminescence age. In the appendix (Ta-

bles A1–A4) we list α-correction factors following the style

4
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Figure 3: Screenshot of the Shiny app ‘RCarb App’ providing a graphical user interface to the package ‘RCarb’. (1) Data import and
calculation menu, (2) central data table with input and output data and (3) graphical output similar to Fig. 2.

of Table 1 in Mauz & Hoffmann (2014) for different water-
and carbonate-mass fractions for a grain size of 250 µm (Ta-
bles A1–A2) and 4 µm (Tables A3–A4). Values for the U-
series and the Th-series are quoted for each grain size, and
the lower rows of each table list the corresponding 2σ uncer-
tainties.

These new α-correction factors were determined by sim-
ulations with the software GEANT4 (Agostinelli et al., 2003)
with a setup similar to Martin et al. (2014). Our sedi-
ment composition used for the simulation followed Nathan
& Mauz (2008) who relied on Garrels & Mackenzie (1971).
Thus, the sediment was dominated by quartz with a signif-
icant contribution of feldspar represented by the following
chemical composition: SiO2 (66 %), Al2O3 (18 %), Fe2O3
(6 %) and KAlSi3O8 (10 %)2. The initial density (without
water and carbonate) was set to 1.8 g cm-3. CaCO3 was used
to simulate carbonate.

The obtained values seem to show a similar trend for both
silt and sand (simulated grain diameters: 4 µm and 250 µm)
but are characterised by increasing uncertainty with decreas-
ing grain size owing to the very low probability for an α-
particle to hit the (simulated) grain. Additional simulations
would improve the precision of the quoted values. Unfortu-
nately, this would require access to a large computer cluster
over several months. Such resources were not available for
this article and, besides, more precise factors do not necessar-
ily improve the overall accuracy of the dose-rate modelling.

Additionally, we performed simulations (data not shown)
for the case of detrital carbonate, i.e. the carbonate is part
of the sediment components (i.e., no cementation). The re-

2We tested different feldspar phases but found no significant differences.

sulting α-correction factors, averaged for U- and Th-series,
estimate at 1.36–1.37 for reasonable water contents inferior
or equal to 20 %. Such values are close to the values reported
by Martin et al. (2014) for a clay sediment matrix. We did not
include those correction factors into ‘RCarb’ since it would
require extensive modification of the code basis, unjustified
by the significant uncertainties of the correction factors (cf.
Tables A1–A4). Instead, if needed, the listed factors can be
used to roughly estimate the impact of the pore filling process
on the luminescence ages in particular environments.

5. Graphical user interface (GUI)
We provide a simple GUI via the R ‘RLumShiny’ (cf.

Burow et al., 2016). To run the GUI the user needs to in-
stall the two packages ‘RCarb’ and ‘RLumShiny’. Alterna-
tively, an installation of ‘RLumShiny’ will force ‘RCarb’

to install, but not vice versa. The GUI can be started in the R
terminal via (listing 4):

Listing 4: Starting the Shiny app ‘RCarb’.
1 ##load package

2 library(RLumShiny)

3

4 ##start app

5 app_RLum(app = ’RCarb’)

In case a valued colleague runs a local Shiny server
(https://shiny.rstudio.com/) in your institution, the
‘RCarb App’ can be started like every other web-based ap-
plication. We do not provide the ‘RCarb App’ via the
Shiny hosting service (http://www.shinyapps.io), since

5
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the few free calculation hours would be quickly exhausted by
a few users and the commercial service is rather costly.

‘RCarb App’ (Fig. 3) is split into three sub-windows: (1)
The import and settings panel, (2) the modifiable spreadsheet
and (3) a graphical output similar to the one presented in
Fig. 2. Clicking on the table rows (Fig. 3-2) switches the
graphical output, i.e. (3) shows the figures corresponding
to the selection in (2). The central table supports various
standard user interactions such as copy & paste, deletion and
insertion of rows. Please note that the modelling feature set
of ‘RCarb’ determines the functionality of “RCarb App”.

6. Conclusion and outlook
We presented a new R package called ‘RCarb’. This

package is a translation of the MATLAB R© software Carb
introduced by Nathan & Mauz (2008) and Mauz & Hoff-
mann (2014). While the package is new, it does not enhance
or substantially modify the features set by Carb. However,
with ‘RCarb’, we provide a refitted open-source and open-
access solution to the community. The code is maintained via
the platform GitHub and we invite interested readers to con-
tribute to further developments. A graphical user interface to
‘RCarb’ is available through the R package ‘RLumShiny’.

Finally, we wish to remind the reader about limits
and assumptions underpinning the Carb model. They are
detailed in Nathan & Mauz (2008) and Mauz & Hoffmann
(2014).

‘RCarb’ is available

• as R package via CRAN: https://CRAN.R-project.
org/package=RCarb,

• as development version under https://github.com/
R-Lum/RCarb,

• and we host a package webpage at https://r-lum.
github.io/RCarb/.
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Appendix
A1: α-radiation correction factors - 250 µm

Table A1: U-series correction factor x for α-radiation for
water and carbonate to sediment mass ratios (ms: sediment
mass; mc: carbonate mass; mw: water mass). Values in italic
do not exist in nature. The lower table quotes corresponding
2σ uncertainties.

U-series — α-radiation — 250 µm
mw/ms mc/ms

0.00 0.04 0.20 1.00
0 - 0.99 1.03 1.02
0.04 1.36 1.18 1.08 1.03
0.20 1.38 1.31 1.19 1.07
1.00 1.37 1.36 1.32 1.19

corresponding 2σ uncertainty
0 - 38.2 % 5.8 % 2.5 %
0.04 29.6 % 15.7 % 4.8 % 2.1 %
0.20 8.7 % 4.4 % 3.0 % 2.2 %
1.00 3.0 % 2.2 % 2.0 % 2.1 %

Table A2: Th-series correction factor x for α-radiation for
water and carbonate to sediment mass ratios (ms: sediment
mass; mc: carbonate mass; mw: water mass). Values in italic
do not exist in nature. The lower table quotes corresponding
2σ uncertainties.

Th-series — α-radiation — 250 µm
mw/ms mc/ms

0.00 0.04 0.20 1.00
0 - 0.96 1.01 1.01
0.04 1.38 1.17 1.07 1.03
0.20 1.36 1.29 1.18 1.07
1.00 1.36 1.34 1.30 1.19

corresponding 2σ uncertainty
0 - 36.0 % 8.9 % 2.5 %
0.04 18.0 % 18.5 % 4.6 % 3.9 %
0.20 6.3 % 5.4 % 4.1 % 3.2 %
1.00 3.5 % 3.8 % 4.5 % 3.4 %

A2: α-radiation correction factors - 4 µm

Table A3: U-series correction factor x for α-radiation for
water and carbonate to sediment mass ratios (ms: sediment
mass; mc: carbonate mass; mw: water mass). Values in italic
do not exist in nature. The lower table quotes corresponding
2σ uncertainties.

U-series — α-radiation — 4 µm
mw/ms mc/ms

0.00 0.04 0.20 1.00
0 - 1.38 0.99 1.03
0.04 1.62 1.00 1.36 1.06
0.20 1.43 1.42 1.12 1.04
1.00 1.42 1.41 1.37 1.20

corresponding 2σ uncertainty
0 - 240.0 % 68.8 % 27.8 %
0.04 256.6 % 183.2 % 45.9 % 22.0 %
0.20 69.1 % 48.5 % 37.6 % 23.9 %
1.00 37.6 % 21.9 % 20.0 % 19.3 %

Table A4: Th-series correction factor x for α-radiation for
water and carbonate to sediment mass ratios (ms: sediment
mass; mc: carbonate mass; mw: water mass). Values in italic
do not exist in nature. The lower table quotes corresponding
2σ uncertainties.

Th-series — α-radiation — 4 µm
mw/ms mc/ms

0.00 0.04 0.20 1.00
0 - 0.88 1.08 1.06
0.04 1.41 0.97 1.04 1.05
0.20 1.43 1.33 1.19 1.07
1.00 1.36 1.36 1.34 1.21

corresponding 2σ uncertainty
0 - 313.9 % 56.5 % 20.5 %
0.04 212.5 % 149.8 % 49.8 % 22.1 %
0.20 62.7 % 40.6 % 30.6 % 18.7 %
1.00 27.6 % 17.2 % 18.5 % 17.1 %
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Abstract
A formula is derived for calculating relative
numerical ages of ceramic vessels using opti-
cally stimulated luminescence (OSL). These
relative numerical ages may be generated
when the standard absolute numerical ages
cannot be determined; this is usually because a
component of the dose rate such as the external
dose rate cannot be measured or deduced.
The error associated with this relative age
formula is derived. It is shown that, where
external dose rate information is unavailable,
the error in the relative age that results from
this lack of information is much smaller than
the equivalent error in the absolute age.

Keywords: OSL dating, relative dating,
museum material, ceramics, archaeology

1. Introduction
An undisputed accomplishment of luminescence dating

has been the calculation of numerical ages for archaeologi-
cal assemblages, most frequently based upon ceramic or sed-
iment dating. Indeed, the application of luminescence dating
has significantly impacted how we look at, and understand,
past human activity. Yet luminescence can also be used as
a relative numerical dating technique, whence it is possible
to establish typological and chronological sequences within
archaeological material and create a floating, relative typo-
logical framework for the material studied.

In general, numerical dating (whether OSL, radiocarbon,
or other) produces an absolute age; that is, it results in an

age which is a known number of years before the present
day, and which allows the associated event (e.g. use/manu-
facture) to be assigned a calendar date. By contrast, relative
dating (e.g. stratigraphy) does not produce a numerical age
(absolute or otherwise), unless it is linked to another chronol-
ogy, whether derived by historical or scientific methods. In
this paper we discuss the creation of a relative numerical
chronology. Like a traditional relative chronology, this nu-
merical relative chronology allows us to assign a sequence
to ancient events, without placing them on a calendar. Like
a standard numerical chronology, we calculate a numerical
age for each sample; this numerical age does not measure
the number of years before present, but it does allow the for-
mulation of statements like “this sample is twice as old as
that one”. Throughout this paper, we will refer to numerical
methods that produce a calendar age (radiocarbon, standard
OSL) as “absolute” methods, and to any methods (numerical
or otherwise) that do not produce a calendar age as “rela-
tive” methods. To distinguish between the relative numerical
method presented here and methods such as stratigraphy, we
refer to the latter as “non-numerical relative dating” or “tra-
ditional relative dating” methods.

Previously, relative OSL dating has not been carried out
for two reasons: first, in cases where access to recently ex-
cavated field material is forthcoming for luminescence dat-
ing, using the technique as a relative dating method is not
necessary as the additional components required to calcu-
late an absolute age will be available. Secondly, owing to
the associated costs of luminescence analysis as a relative
dating technique, alternative relative dating techniques, such
as seriation, would be the more accepted option in many
cases. However, there are clear areas of research where us-
ing luminescence as a relative dating tool would be of ben-
efit to the archaeologist: for example, ceramic assemblages
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in museums, whose provenance and chronology are uncer-
tain (particularly when used in combination with the mini-
mum extraction technique (MET) which is a method for ob-
taining optically stimulated luminescence (OSL) dates from
museum materials; Hood & Schwenninger, 2015). For such
material, a set of relative luminescence dates might well pro-
vide significant new insights, and perhaps even be the only
robust way of establishing their relative chronology. The rea-
sons for needing to rely upon museum material, rather than
recently excavated material are varied, but include political
and geographical disruptions which render access to an orig-
inal excavation site impossible.

Many museum pieces were acquired in an era when de-
tailed recording of provenance and archaeological context
was rare, often with specimens being bought from antiqui-
ties dealers with no indication of the true find-spot of a piece,
other than a broad regional location. Often this would happen
to entire classes of vessels, those that were the more prized,
probably owing to a particular characteristic of the ware, and
in turn significant information was lost. A particular case
in point is the Predynastic Egyptian Decorated Ware, or D-
Ware, one of nine wares classified by Petrie in his Corpus of
Prehistoric Pottery (Petrie, 1921). Although Petrie (whose
recording methods were arguably the best of his generation)
along with his peers excavated a large number of such vessels
for museum collections, a large number were also acquired
by museums through other means (e.g purchase) to add to
their collections, and often without verified provenance.

Without their origin being known (and having been well
cleaned prior to display), these vessels lack a crucial piece of
information for determining an absolute luminescence date:
the external dose rate (Ḋext ), which can be obtained using
original sediment adhering to the vessel. Without the Ḋext
measurement, only a relative date can be achieved by taking
the equivalent dose (De) and dividing it by the internal dose
rate (Ḋint ), rather than dividing it by the sum of Ḋext and Ḋint .
While the lack of information about Ḋext will mean that this
relative date can deviate significantly from the true absolute
age of the pot, the relative date may be used to determine
the relative sequence of the ceramics in a manner similar to
traditional relative dating techniques such as seriation, that
is, these dates will help determine the sequence of the ves-
sels. This relative date would depend on the assumptions
that Ḋext is both small compared to Ḋint (often the case for
ceramic material) and similar for all the ceramics being stud-
ied. The second assumption may be justified on a variety of
grounds, for example the ceramics come from one context;
the ceramics come from contexts constructed from common
building materials; the ceramics come from contexts with the
same geology; the ceramics comes from a region where the
natural background radiation has been measured across that
region and shown to have little variation. The merit of this
assumption must be argued on a case-by-case basis; in this
paper we study a group of ceramics from several similar (ra-
diometrically speaking) contexts at a single site.

This paper is accompanied by a second paper (Hood et al.,
2019), which we refer to as Part B. This work, Part A,

presents a derivation of the formulae for obtaining both a rel-
ative luminescence age and the associated relative error. Part
B, which follows directly, presents a case study on determin-
ing the relative age using OSL dating, carried out on a group
of ancient Egyptian ceramics.

2. Formal derivation of a relative age formula
and associated error

In order to accurately apply luminescence as a relative
dating technique, it is essential to determine how to calcu-
late the approximate relative age of vessels using only the
De and Ḋint measurements, as well as how to construct an
estimate of the error associated with this calculation, which
results from the fact that Ḋext is neglected.

To derive the approximation and associated error, we must
start from a mathematical expression for the relative age. To
formulate such an expression we temporarily assume knowl-
edge of all the parameters, including the external dose rate,
that are required to derive hypothetical (absolute) numerical
ages for each vessel. We then define the relative age of two
vessels to be the hypothetical (absolute) numerical age of one
divided by the hypothetical (absolute) numerical age of the
other.

Having defined this relative age, we make an approxima-
tion of it by using asymptotic theory, and identifying certain
parameters which we expect to be small (we will estimate
them and verify that they are small subsequently). In com-
mon with standard asymptotic approaches, we wish to derive
an approximation that tends to the original expression in the
limit that the parameters become infinitely small. When (as
is typically the case) the parameters are finite, there is an
error associated with the approximation whose size we can
estimate.

Mathematically, the relative age, R, of two vessels is de-
fined as:

R≡ A1

A2
, (1)

where A1 and A2 are the hypothetical (absolute) numerical
ages of the two individual vessels respectively. Now,

A1 =
De,1

Ḋint,1 + Ḋext,1
(2)

and
A2 =

De,2

Ḋint,2 + Ḋext,2
, (3)

where De,1, Ḋint,1 and Ḋext,1 are the equivalent dose, the in-
ternal dose rate and the external dose rate, respectively, for
the first vessel and De,2, Ḋint,2 and Ḋext,2 are the same mea-
surements for the second vessel. Therefore,

A1

A2
=

De,1

De,2

Ḋint,2 + Ḋext,2

Ḋint,1 + Ḋext,1
. (4)

If Ḋext,1 and Ḋext,2 (i.e. Ḋext ) were known, we would
know the exact relative age of the two vessels. However,
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even though these values are unknown, it is possible to cal-
culate an approximate relative age for both of the vessels,
and, additionally, an estimation of the error associated with
that approximation. There are three assumptions required:
first, that Ḋint is similar for both vessels; secondly, that Ḋext
is similar for both vessels; thirdly, that for both vessels Ḋext
is smaller than Ḋint .

More formally, we can define three parameters εI , εE and
δ as follows:

εI ≡ Ḋint,2− Ḋint,1 =⇒ Ḋint,2 = Ḋint,1 + εI , (5)
εE ≡ Ḋext,2− Ḋext,1 =⇒ Ḋext,2 = Ḋext,1 + εE , (6)

δ ≡
Ḋext,1

Ḋint,1
=⇒ Ḋext,1 = δ Ḋint,1, (7)

and we further assume that these parameters are small, that
is, ∣∣∣∣ εI

Ḋint,1

∣∣∣∣� 1,
∣∣∣∣ εE

Ḋext,1

∣∣∣∣� 1, δ � 1. (8)

The meaning of these parameters, and the justification for
assuming that all three are small, will be discussed below.

Now εI and εE can be substituted directly into the equa-
tion for the relative age (4):

A1

A2
=

De,1

De,2

Ḋint,1 + Ḋext,1 + εI + εE

Ḋint,1 + Ḋext,1
(9)

=
De,1

De,2

(
1+

εI + εE

Ḋint,1 + Ḋext,1

)
(10)

=
De,1

De,2

(
1+

εI

Ḋint,1 + Ḋext,1
+

εE

Ḋint,1 + Ḋext,1

)
. (11)

Note that no approximations have been made up to this point,
that is, the three assumptions have not yet been utilised.

At this point, it is possible to simply approximate the rela-
tive age as De,1/De,2, in which case the error would be given
by the last two terms of equation (11), assuming, of course,
that εI and εE are both small. However, is it possible to im-
prove upon this estimate as follows.

First, the definition of δ is substituted into equation (11):

A1

A2
=

De,1

De,2

(
1+

εI

Ḋint,1 (1+δ )
+

εE

Ḋint,1 (1+δ )

)
. (12)

The ratio δ is now assumed to be small, which allows the
following approximation to be made (using a Taylor series):

1
1+δ

≈ 1−δ (13)

which means that

A1

A2
≈

De,1

De,2

(
1+

εI

Ḋint,1
(1−δ )+

εE

Ḋint,1
(1−δ )

)
(14)

and therefore

A1

A2
≈

De,1

De,2

(
1+

εI

Ḋint,1
− εI

Ḋint,1
δ +

εE

Ḋint,1
(1−δ )

)
. (15)

However,

1+
εI

Ḋint,1
=

Ḋint,2

Ḋint,1
, (16)

so

A1

A2
≈

De,1

De,2

(
Ḋint,2

Ḋint,1
− εI

Ḋint,1
δ +

εE

Ḋint,1
(1−δ )

)
. (17)

It can be seen that the second term in this equation
(εIδ/Ḋint,1) is second order, being the product of two small
parameters. Furthermore, we note also that while δ is pos-
itive definite, both εI and εE can be either positive or nega-
tive. Thus, when estimating the error, the second term would
have to be added to the third term in quadrature: assuming
δ is sufficiently small, we may safely drop this second term,
meaning that

A1

A2
≈

De,1

De,2

Ḋint,2

Ḋint,1

(
1+

εE

Ḋint,1

Ḋint,1

Ḋint,2
(1−δ )

)
. (18)

Equation (18) demonstrates that the relative age can be ap-
proximated by

R≡ A1

A2
≈

De,1

De,2

Ḋint,2

Ḋint,1
(19)

with a relative error given by:

1
R

εE

Ḋint,2
(1−δ ) . (20)

Rearranging equation (19), it can be seen that

R≡ A1

A2
≈

De,1/Ḋint,1

De,2/Ḋint,2
, (21)

and comparing this equation with (4), it can be seen that the
approximation of the relative age of two vessels is simply
effected by neglecting Ḋext , the external dose rate. However,
the important point is that the relative error in this relative age
is significantly smaller than the relative error in the individual
absolute ages that could be calculated by neglecting Ḋext .

The relative deviation (which results from neglecting
Ḋext ) in the absolute age (of, for example, the first vessel)
is given by

De,1/Ḋint,1−De,1/
(
Ḋint,1 + Ḋext,1

)
De,1/

(
Ḋint,1 + Ḋext,1

) (22)

=
1/Ḋint,1−1/

(
Ḋint,1(1+δ )

)
1/
(
Ḋint,1(1+δ )

) (23)

= δ . (24)

3. Estimating the uncertainty of the approxi-
mate relative age

The relative deviations in the relative and absolute ages
can now be compared by obtaining estimates for the values
of δ and εE/Ḋint,2.
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It should be noted that though we are comparing the spe-
cific case of two vessels, in general εE can be thought of as
the variation of Ḋext within a studied ceramic assemblage,
and Ḋint,2 can be considered as an order of magnitude esti-
mate of Ḋint , and δ is an estimate of the typical ratio between
Ḋext and Ḋint . Thus, if we denote the mean of the internal
dose rate measurements as µI , the mean of the external dose
rate measurements as µE , and the uncertainty of the external
dose rate measurements as σE , we may write:

δ ∼ µE

µI
(25)

and

1
R

εE

Ḋint,2
(1−δ )∼ 1

R
σE

µI
(1−δ ) . (26)

The quantity µI is easily calculated since the internal dose
rates in this analysis are assumed to be known. The value of
R will of course vary with each vessel. In contrast, since the
external dose rates for the vessels in question are assumed
to be unknown, some additional source of information will
be necessary to determine µE and σE . Since these are only
required to estimate the error, and do not affect the age calcu-
lation itself, order-of-magnitude approximations will be suf-
ficient: a set of values taken from a similar assemblage, or
surveys of the region, may be used (e.g. following Zink et al.,
2012).

As an example, we consider the first application of this
methodology in Part B of this paper (Hood et al., 2019). As
no measurements for Ḋext existed for the vessels under con-
sideration, µE and σE were estimated using existing values
from the literature and from measurements taken from mate-
rial at a different site (of similar age and composition). This
was justifiable, because the values for Ḋext measurements
across a wide geographical region around the site were very
similar to one another. In this work the actual values were
σE ∼ 0.108, µI ∼ 1.61, µE ∼ 0.726, and R ∼ 1 on average,
meaning that the relative error estimates were

1
R

σE

µI
(1−δ )∼ 3.6%, (27)

for the relative ages and

δ ∼ µE

µI
∼ 45% (28)

for the absolute ages.
In summary, this section shows that the relative age of two

vessels is obtained (equation 19) by dividing the De of one
vessel by that of another, and then dividing by the associated
ratio of the Ḋint measurements for each vessel; effectively,
this is calculating the ratio of the two absolute ages while
neglecting Ḋext . Furthermore, it demonstrates that when ne-
glecting Ḋext the relative error in the absolute age for a given
vessel is ∼45%, but the relative error in the relative age for a
given vessel, is only ∼3.6% (an error which is small when
added in quadrature to the relative error of the equivalent
dose measurement).

4. How to calculate a relative age sequence
In Section 2, we derived a formula for the relative age, R,

of two vessels. We now lay out briefly a program for calcu-
lating the relative ages of a group of vessels (whose external
dose rates satisfy the conditions given in Section 1).

1. For each of the vessels, determine the equivalent dose
(De) and the internal dose rate (Ḋint ) in the usual way.

2. Select a vessel to be used as a reference vessel. This
vessel may be selected for a number of reasons, for ex-
ample:

(a) Low uncertainty on its De and Ḋint measurements
(which will reduce the uncertainty across the other
relative ages).

(b) The vessel has a known absolute age, e.g. through
a known Ḋext , or by associated radiocarbon or his-
torical chronologies.

(c) The vessel has an age that is central to the se-
quence.

3. Calculate the relative age of every vessel in the se-
quence. If we define the equivalent dose of our selected
reference vessel to be De,re f and the internal dose rate of
the reference vessel to be Ḋint,re f , then for all the other
vessels, the relative age R of the vessel may be calcu-
lated as follows:

R =
De

De,re f

Ḋint,re f

Ḋint
(29)

4. The uncertainty in the relative age is composed of two
parts: the error that comes from neglecting Ḋext , given
in equation (26), and the error that comes from un-
certainties in Ḋint and De. These can be combined in
quadrature, as they are uncorrelated with each other.
Thus if εR is defined to be the absolute uncertainty in
the relative age, and εD the absolute uncertainty in the
equivalent dose, we may write:

εR

R
∼

√√√√√√√√
(

εI

Ḋint

)2

+

(
εI,re f

Ḋint,re f

)2

+

(
εD

De

)2

+(
εD,re f

De,re f

)2

+

(
1
R

σE

µI
(1−δ )

)2

(30)
where σE , the estimated variation in the external dose
rate, and µI , the average internal dose rate, are defined
in the previous section.

5. Discussion
Luminescence dating can be used as a relative dating

method to establish a relative chronology for an archaeolog-
ical assemblage. This paper has outlined the mathematical
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formula with which to calculate this age, and the error asso-
ciated with determining the sequence.

Using OSL dating as a relative dating tool would be most
beneficial for work on museum collections, or in any case
where the original contextual information for an assemblage
is lacking. Additionally, it would be adventageous in detect-
ing forgeries.

It may be the case that some parts of the external dose rate,
for example the cosmic dose rate (Ḋcos), are known, and in-
deed that there may be other more unusual external doses,
coming from, for example, a storage location since excava-
tion, x-ray imaging, CT-scanning, and so on. In this case, the
above analysis may be simply adapted as follows: all known
doses should be included in the calculation of Ḋint,1, Ḋint,2,
and of course µI , with µE and σE being the estimated mean
and uncertainty of the remaining unknown dose received by
each vessel.

Finally, once a relative sequence has been calculated, if
one member of the sequence has an associated absolute date
calculated by other means (i.e. radiocarbon dating), the
whole sequence can then be anchored and the absolute ages
of all the vessels can be derived (within error bars). This
powerful result seems somewhat counterintuitive; however,
it is merely a result, principally, of assuming that the varia-
tion in the external dose rate is small compared to the size
of the internal dose rate (a condition often true for pottery),
and holds as long as this is the case (it should be noted, addi-
tionally, that any errors in the single absolute date will apply
systematically to the whole sequence).

6. Conclusion
In summary, this paper has provided a framework for im-

plementing luminescence dating as a relative dating method.
While the usefulness of this technique will be heavily depen-
dent upon individual assemblages and the quality of available
relative dating methods, further potential for this technique is
significant in the museum world and further advances in the
study of archaeological assemblages can be made as a result.
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Abstract
This paper discusses the applicability of using
luminescence as a relative numerical dating tool.
Examples of when such an application may be
useful include the dating of museum materials
for which original external dose rate informa-
tion is no longer obtainable. Without the exter-
nal dose rate, it is still possible to obtain the rel-
ative ages of two or more vessels, which is par-
ticularly useful when attempting to ascertain
typological sequences or chronological implica-
tions of archaeological assemblages. This paper
presents a case study on determining the rel-
ative numerical age using optically stimulated
(OSL) dating, carried out on a group of an-
cient Egyptian ceramics. This paper is preceded
directly by Part A (Highcock et al., 2019) of
this article, which presents a derivation of the
formulae for obtaining both a relative lumines-
cence age and the associated relative error.

Keywords: OSL dating, relative dating, mu-
seum material, Egyptian archaeology, Naqada
Culture, Egyptian chronology, Predynastic
Egypt, Early Dynastic Egypt, ceramics.

1. Introduction
Luminescence dating can be used to determine relative

ages for ceramic assemblages, even in the absence of exter-
nal dose rate (Ḋext ) measurements, which may not always
be available. The most obvious example of the usefulness

of relative dating by luminescence are studies of material
from museum collections, for which no original sedimentary
material is available for the determination of Ḋext ; for such
(often unprovenanced) museum specimens the knowledge of
relative chronological sequences is beneficial.

The companion paper (Part A, Highcock et al., 2019) of
this article presents a derivation of the formulae that can be
used to obtain relative ages using luminescence, as well as its
associated relative error. Here, in Part B, we now present a
case study, using an assemblage of wavy-handled vessels and
wine jars from the Predynastic and Early Dynastic Periods of
Egyptian history (c. 3300 – 3000 BC).

As discussed further in Part A, this new approach neces-
sitates somewhat non-standard nomenclature when referring
to ages. To summarise: what is generally known as a numer-
ical age, which is given as a number of years before present
or as a calendar date, we refer to as an absolute numerical
age. What is generally known as a relative age, as deter-
mined by, for example, seriation, we continue to refer to as
a relative age. The calculation presented in Part A defines a
relative numerical age. Like a standard (absolute) numeri-
cal age, the relative numerical age is expressed as a number,
and that number can be used to make quantitative statements
like “this vessel is twice as old as that vessel.” Like a tradi-
tional relative age, the relative numerical age cannot (without
additional evidence) be related to a number of years before
present, or a calendar date.

2. The data set

To illustrate how OSL can be used as a relative numer-
ical dating technique, and thus be used to further improve
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Figure 1. Wavy-handled vessels from Turah used in this study. Vessels appear in their relative chronological order (oldest to youngest left to
right and top to bottom).

our understanding of the chronology of archaeological as-
semblages, two sets of objects were examined: a selection
of seven wavy-handled vessels from Predynastic and Early
Dynastic Egypt from the site of Turah (Figure 1), and three
wine jars—two archaeologically complete specimens from
Turah, and one sherd from Hierakonpolis, each inscribed
with a serekh or pot mark (Figure 2).

The Turah material offered an almost complete relative
sequence of wavy-handled vessels for study. This assem-
blage is a prime set of material on which to demonstrate
how OSL can be used as a relative numerical dating tech-
nique, because, with regard to ceramic typology, it is one of
the most well-understood ceramic assemblages from early
Egypt. Wavy-handled vessels provided the backbone of
Petrie’s ceramic sequencing system, developed in the late

19th century, which is still a tool for relative dating of
Egypt’s earliest pottery today (Petrie, 1899, 1901). The
wavy-handled vessel type is observed across Pre- and Early
Dynastic Egypt, and was fundamental in defining the Naqada
Culture and establishing the archaeological chronology for
the Predynastic and Early Dynastic phases of Egyptian his-
tory (here we follow the Naqada Culture as defined in Hen-
drickx (1996, 2006); see also Kaiser (1957); Köhler (2004);
Köhler & Smythe (2004); Köhler (2013) and further discus-
sion of terminological inconsistencies in Köhler & Thalmann
(2014) and Hood (2017)). It continues across several ar-
chaeological phases spanning the Predynastic and Early Dy-
nastic Periods. While other vessel types came and went,
the wavy-handled vessel continued to develop. Petrie orig-
inally based his seriation of Predynastic and Early Dynas-
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Figure 2. Wine jars used in this study. X4112, the sherd, is from Hierakonpolis; X5489 and X5490 are from Turah. Also shown at the bottom
of the figure are enlarged drawings of the pot marks appearing on X5489 and X5490.

tic Egyptian ceramics on this vessel type, noting the gradual
change in vessel form from the bulbous vessel with func-
tional wavy handle, to the elongated cylindrical shape with a
fine wavy decoration, which no longer served as a functional
handle. Indeed, the final known development of this vessel
type no longer has a wavy decoration at all, and is a smaller
and rougher cylindrical form when compared to its prede-
cessors (Köhler, 2004). The seven wavy-handled/cylindrical
vessels selected for OSL analysis here represent an excellent
typological assemblage of this particular ware, spanning the
Naqada IIIA to Naqada IIIC2 periods.

In addition to the wavy-handled vessels, the three wine
jars were also examined with luminescence. Two of these
had an inscribed serekh (pre-fired engraved marks on the ves-
sel in the form of a rectangle, containing a symbol/name of

historical figures). These vessels, owing to their vessel in-
dex (Köhler & Smythe, 2004), their typology and their in-
scribed historical information (i.e. a serekh, which can often
be directly linked to known figures or time period within the
historical chronology) (Van Den Brink, 2001, 1996), make
prime candidates for illustrating the applicability of OSL as
a relative numerical dating technique.

Unfortunately, with regard to the wavy-handled vessels,
although it is known that all these ceramics studied here
come from the site of Turah, the exact provenance of each
piece was not recorded. No original depositional sediment
was attached to the Turah material, and given that the site is
now under military occupation, it is at present unlikely that
absolute numerical luminescence dates will be obtained for
this material in the future.
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Table 1. Relative ages of vessels from Turah and Hierakonpolis. Relative ages of the wavy-handled/cylindrical vessels and the wine jars
from Turah and Hierakonpolis. The table shows the equivalent dose (De) and the total internal dose rate (Ḋint ) for both coarse grain (CG)
and fine grain (FG) material as available. Also shown are the relative numerical ages of each pot, relative to a reference vessel (X5486, see
text), again for CG and FG. Finally, the table also shows a combined age, which is either the CG or FG age if only one is available, or a
combination of both CG and FG results made by using kernel density estimation. It is this combined age which is displayed in Figure 3. Also
given is the ratio N of accepted aliquots to total aliquots. Element concentrations used to determine Ḋint are available in Hood (2017). The
following rejection criteria were applied: test dose error: ≤ 20%; recycling ratio: ≤20%; recuperation: ≤5%; IRSL/OSL ratio: ≤15% (Note
that these rejection criteria are slightly higher than ‘standard’ rejection criteria. This is owing to MET sampling producing very few aliquots
for some samples and therefore in order to work with these samples a more flexible rejection criteria was implemented. Further details can
be found in Hood (2017)). Uncertainties in De are calculated, using the central age model, from non-rejected aliquots; uncertainties in Ḋint ,
which incorporate the uncertainty in elemental analysis, were determined by DRAC (Durcan et al., 2015); uncertainty in the relative ages is
calculated using the uncertainties in De, the uncertainties in Ḋint , and the uncertainty that results from the relative age formula as detailed in
Part A (Highcock et al., 2019).

Site Vessel N De (Gy) Ḋint (Gy/ka)
Date Relative to X5486
(expressed as a ratio)

Combined Date
Relative to

X5486 (as a ratio)
CG FG CG FG CG FG CG FG

Turah X5482 N/A 6/6 N/A 12.05 ± 0.61 N/A 1.68 ± 0.07 N/A 1.18 ± 0.09 1.18 ± 0.09
Turah X5484 1/8 N/A 8.09 ± 1.68 N/A 1.38 ± 0.07 N/A 0.86 ± 0.19 N/A 0.86 ± 0.19
Turah X5486 3/7 6/6 9.60 ± 0.78 11.27 ± 0.40 1.41 ± 0.08 1.84 ± 0.07 1.00 ± 0.11 1.00 ± 0.07 1.00 ± 0.06
Turah X5488 3/6 N/A 10.17 ± 1.36 N/A N/A 1.63 ± 0.06 N/A 1.02 ± 0.15 1.02 ± 0.15
Turah X5489 2/14 5/6 8.73 ± 0.32 10.05 ± 0.25 1.50 ± 0.08 1.81 ± 0.07 0.85 ± 0.06 0.91 ± 0.06 0.88 ± 0.04
Turah X5490 N/A 6/6 N/A 9.81 ± 0.69 N/A 1.63 ± 0.06 N/A 0.98 ± 0.09 0.98 ± 0.09
HK X4112 11/18 N/A 7.43 ± 0.48 N/A 1.65 ± 0.10 N/A 0.66 ± 0.06 N/A 0.66 ± 0.06

Far more is known about the provenance of the Hierakon-
polis sherd than the vessels recovered from Turah. Owing
to the nature of the serekh inscription, which possibly ex-
hibits the name of Narmer, arguably Egypt’s first Pharaoh, a
rather detailed discussion of its find-spot was included in its
publication (Garstang, 1907: 135, Pl. III; cf. Adams, 1995:
123–124). Unfortunately, no original depositional material
was attached to this sherd either.

3. Methodology

All OSL samples were collected using the minimum ex-
tract technique (MET) sampling protocol, specifically de-
signed for use on museum materials (Hood & Schwenninger,
2015). Sample preparation was done in subdued lighting
conditions following standard coarse grain and fine grain
sample preparation (Hood & Schwenninger, 2015; Hood,
2017). OSL measurements were carried out on a Risø auto-
mated DA-15 luminescence reader. The SAR protocol (Mur-
ray & Wintle, 2000) was used in combination with a post-
IR blue measurement so that any IRSL signal present owing
to feldspar contaminants would be removed by IR stimula-
tion carried out before measuring the OSL signal during each
SAR cycle (Banerjee et al., 2001; Mauz & Lang, 2004). An
IRSL/OSL depletion ratio of ≤ 15% was used as a rejection
criterion.

Optical excitation was achieved by the use of filtered blue
diodes (410–510 nm emission), and infrared stimulation us-
ing IR diodes. Luminescence signals were detected in the
UV spectrum by an EMI 9635Q bialkali PMT, fitted with a
7.5 mm Hoya U340 glass filter (Riso, 2007). Sample irra-

diation was done using a sealed 90Sr beta source at a rate
of approximately 2.3Gy/min, and calibration was carried out
with Risø calibration quartz (Hansen et al., 2015). Equivalent
dose (De) determination was done using the Analyst software
package, V4.12 (Duller, 1999), and rejection criteria deter-
mined for use with MET sampling were used (see Table 1
caption; Hood 2017). Internal dose rate (Ḋint ) measurements
were obtained by ICP-MS analysis.

4. Results
Table 1 presents the final De measurement results and the

internal dose rate for each vessel obtained using ICP-MS.
Of the 10 vessels examined, all three wine jars produced

acceptable OSL signals, but three of the seven wavy-handled
vessels did not (X5483, X5485, X5487), which is a relatively
high degree of failure. Of these three vessels, two are made
of marl clay and one from Nile silt, both materials for which
successful OSL measurements were performed here and in
other studies. It is unfortunate that X5483, X5485 and X5487
did not yield results, as all three were particularly diagnostic.

5. Discussion
Figure 3 presents the relative ages of the seven vessels for

which OSL results were obtained. There are two extreme
values, X5482 and X4112, whose relative ages of 1.15 and
0.7 would imply that they are roughly 700 years older and
1500 years younger than the rest of the group respectively,
which is not consistent with known historical sequences (fur-
ther discussion below).
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Figure 3. Upper: this graph shows the relative sequence of each vessel that produced a De measurement in the Turah/Hierakonpolis assem-
blage, based upon X5486 which acts as an anchoring reference point for the sequence (see text). The relative numerical age and error are to
be found in the final column of Table 1. In turn, this graph therefore indicates the chronological progression of each vessel relative to X5486,
with X4112 being the youngest in the assemblage. The red and green bars denote the upper and lower errors with the boundary between them
being the central age value. Lower: in contrast with the upper figure, this figure depicts the relative typological sequence for this material
based upon archaeological evidence, and thus visually demonstrates the issues encountered with some of the OSL De measurements.

The errors associated with the remaining five vessels are
broad compared to the difference in relative ages between
them. This means that any concrete statement about whether
one vessel is older or younger than another must be treated
with caution. However, Figure 3 also clearly demonstrates
a strong relationship between the relative OSL sequence and
the typological ceramic sequence. While it is beyond the
scope of this paper to enter a discussion of the full archae-
ological implications and analysis of the OSL results (inter-

ested readers are referred to Hood, 2017), it is appropriate
to say that the relative OSL age sequence of vessels is in
excellent keeping with established ceramic typology of the
Naqada Culture. Indeed, with the exception of X5486, all
vessels are in sequence in accordance with latest typologi-
cal research (Hendrickx, 1996, 2006; Köhler, 2004; Köhler
& Smythe, 2004; Van Den Brink, 1996, 2001).

Although X5486 dates to the Naqada IIIA1/IIIA2 period,
it is placed in the OSL relative sequence as being younger
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than X5488 and X5482, which is not in keeping with the
relative archaeological sequence, which places X5488 and
X5482 within the later Naqada IIIB period. Within the OSL
relative sequence it is almost impossible to distinguish be-
tween X5486 and X5488, due to the significant errors asso-
ciated with X5488. Indeed, this is the situation between all
three vessels (X5482, X5486 and X5488): their associated
errors make it difficult to distinguish a true chronological se-
quence here, except for confidently being able to state that all
three vessels are chronologically older than X5484. This is a
resolution error and could be further refined should a larger
data set be available. In the case of X5482, the discrepancy in
relative age between it and X5486/X5488 is approximately
15% (see Figure 3), which in terms of numerical age gives
an error of ∼750 years. This is very unlikely and could be
the result of a measurement error: a single aliquot within
the OSL data produced a De measurement which was signif-
icantly higher than the other measurements and is an outlier.
However, as this aliquot could not be discounted based upon
the standard rejection criteria applied, it was considered best
practice to include this measurement even though it is likely
to produce an overestimation in the OSL measurement.

We must also discuss sherd X4112. With regard to its
relative OSL sequence, it should be noted that although fit-
ting in with the relative sequence of the other two wine
jars, the difference between the relative ages of X4112 and
X5489/X5490 sits at approximately 20% (see Figure 3). This
is far too large a discrepancy to fit with the relative typolog-
ical sequence as it would place X4112 roughly 1 000 years
later, in absolute terms, than the rest of the assemblage.

6. Conclusion
This paper has demonstrated that the application of OSL

dating as a relative numerical dating method has benefits
for examining the relative typological sequence of ceram-
ics. With the small data set and large uncertainty in the dates
presented, it is currently only possible to demonstrate this
technique as a proof-of-principle and to make broad state-
ments when comparing the OSL vs. archaeological relative
chronologies. However this in no way invalidates the use-
fulness of OSL dating as a relative numerical dating tool,
but rather means that more data (i.e. more vessels) are re-
quired than in this pilot study. If several examples of each
vessel type were sampled, in combination with good statisti-
cal modelling and, even better, a technique such as cladistics
(i.e., Hood & Valentine, 2012), OSL as a relative dating tech-
nique would be a powerful tool. Even with the limited data
available, we can make the following positive observations:
that the five non-outlier ages are well clustered and could be
considered consistent given errors with a spread in relative
numerical ages of around 5% (that is, roughly 250 years),
and are consistent with the known historical chronology.

Although the wavy-handled/cylindrical vessels have
proved somewhat problematic owing to issues surrounding
a small data set, the wine jar assemblage demonstrates that
the relative sequence of ceramics achieved through OSL dat-

ing of this assemblage has been in full agreement with the
pre-existing ceramic sequence described for the Naqada Pe-
riod.

In the future, this technique could be used on suitable ar-
chaeological materials world-wide. It may be of particular
value when working with museum contexts, where limited
archaeological information is available, or where the inter-
nal chronology of an assemblage is little understood. This
technique could also be used to identify forgeries in museum
collections.

While in itself this paper has not yielded new information
(the relative sequences of the wavy-handled vessels and wine
jars are well documented and well understood in Egyptian
archaeology), this paper has demonstrated that OSL dating
can be of benefit to relative chronology as well as absolute,
providing a framework for implementing OSL dating as a
relative numerical dating method. While the usefulness of
this technique will be heavily dependent upon individual as-
semblages and the quality of available relative dating meth-
ods, further potential for this technique is significant in the
museum world and further advances in ceramic chronology
could be made as a result.
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Abstract
In the past 20 years optically stimulated lumi-
nescence (OSL) dating has advanced as a well-
established geochronometer for dating Quater-
nary sediments. Currently, there are power-
ful calculation platforms for specific calcula-
tions, such as the R package ‘Luminescence’
and the web-based dose rate calculator DRAC.
However, the community lacks a self-contained
computational synthesis that can process equiv-
alent dose and dose-rate calculations to avoid
unnecessary data exchange among multiple-
platforms that may inadvertently propagate er-
rors. Thus, we have developed a unified cal-
culation program that maintains, archives and
synthesizes basic OSL data, applies appropri-
ate statistical models, and dose rate parameters
in an updatable platform, to render statistically
significant OSL ages. In this paper, the Lu-
minescence Dose and Age Calculator (LDAC)
written in Microsoft Visual Basic for Applica-
tion is presented that can compute final equiv-
alent dose values, the environmental dose rate,
and render a final burial OSL age. LDAC incor-
porates statistical parameters, visual presenta-
tions of the equivalent dose distribution, applies
well-developed statistical age models, and uses
up-to-date dose rate parameters into a compu-
tational system using fifteen linked functional
routines. Most notably, a Markov chain Monte
Carlo slice sampling method was employed to
estimate the parameters of the minimum and
maximum age models. Also, the statistical ba-
sis for error propagation of dose rate and final

age was improved. The program is designed to
be user-friendly with operations and data en-
try conveniently executed through a graphical
user interface. The operations and calculations
are presented with transparency and flexibil-
ity, allowing for modification of given values,
constants, and algorithms. This computational
platform is easily loaded on to a PC and can
be used in a Windows environment equipped
with Microsoft Excel 2010 or later. The lat-
est version of LDAC can be downloaded along
with a user manual at https://github.com/
Peng-Liang/LDAC.
Keywords: OSL dating; equivalent dose; statis-
tical age models; dose rate; LDAC; Microsoft
VBA

1. Introduction
An accurate and precise chronology for sedimentary pro-

cesses and the enclosure of associated fossils or artifacts is a
cornerstone of the geosciences. Optically Stimulated Lumi-
nescence (OSL) dating since 1985 has evolved significantly
as an accurate dating technique, providing improved chrono-
logic control for the past 200 ka (Huntley et al., 1985; Win-
tle, 2008; Wintle & Adamiec, 2017). This geochronome-
ter, based on the principles of radiation dosimetry, measures
the burial time since mineral grains, such as quartz and K-
feldspar, were last exposed to sunlight (Aitken 1998, p. 6–
36; Murray & Wintle 2000; Murray & Wintle 2003; Wintle
& Murray 2006; Preusser et al. 2009). An important value
in OSL dating is the equivalent dose (De), which is the esti-
mate of the ionizing radiation dose received during the burial
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period (in Grays; Gy) after solar resetting (Aitken 1998, p.
6–36). An OSL age is calculated by division of the De by the
estimated dose rate (Dr), which is an evaluation of the expo-
sure rate to ionizing radiation (mGy/yr) from the surrounding
sediments and cosmic/galactic sources (Aitken 1998, p. 6–
11). OSL dating has advanced significantly in the past thirty
years with the advent of single aliquot and grain regenera-
tion (SAR) methods (e.g., Wintle & Murray 2006; Wintle &
Adamiec 2017). This geochronometer is most robust when
dating sediments that have been well and uniformly solar
reset, such as mineral grains from aeolian and littoral envi-
ronments (e.g., Lang et al. 2003; Forman et al. 2014; Yang
et al. 2015; Yang et al. 2019; Lancaster et al. 2016; Tamura
et al. 2019). The De distribution for well solar reset grains
often shows a unimodal distribution, with a low overdisper-
sion value (< 0.20) (Forman et al., 2014). However, the De
can vary substantially for separate aliquots or grains from
fluvial and lacustrine environments, reflecting partial solar
resetting or incorporation of older grains, mostly exposed in
turbid water environments (e.g., Aitken 1998, p. 143–175;
Arnold et al. 2007; Cunningham & Wallinga 2012; Hesse
et al. 2018). Thus, the De distribution of variably solar reset
grains often exhibits a multi-modal distribution with a high
overdispersion (> 0.30). Commonly, the youngest De popu-
lation for grains is the closest to the actual age for partially
solar-reset sediments (e.g., Cunningham & Wallinga 2012;
Hesse et al. 2018).

Fortunately, there are several statistical models such as the
central, minimum, maximum, and finite mixture age mod-
els that have been developed to deconvolute De populations
that reflect the time since sediment deposition and shield-
ing from further sunlight exposure (Galbraith & Green, 1990;
Galbraith et al., 1999; Galbraith & Roberts, 2012). In turn,
the environmental Dr is a required assessment for dating,
which is defined by ten separate variables reflecting com-
plex, ionizing-radiation conditions during the burial period
(Aitken 1998, p. 37–57; Durcan et al. 2015). Thus, there is a
need for a calculation platform that synthesizes De data, in-
corporates appropriate statistical models, and Dr parameters
in a self-consistent manner, which can be easily updated with
future refinements in constants, statistical analyses, and data
visualization. Several well-appointed calculation programs
have been developed for specific De and Dr computations
that serve the luminescence dating community well (e.g.,
Grün 2009; Kreutzer et al. 2012; Peng et al. 2013; Durcan
et al. 2015; Burow et al. 2016). For example, a highly flexible
R script-based computational package, `Luminescence'

(Kreutzer et al., 2012, 2018), was designed to further ana-
lyze the luminescence data from SAR measurements. This
package was integrated into the latest version of the Ana-
lyst luminescence software (v4.57), which supports model-
ing functions and graphing routines (Duller, 2018). How-
ever, the R`Luminescence' package lacks a visual inter-
face with user interactions through the R programming en-
vironment. As a partial remedy for this platform a graph-
ical user interface (GUI) does exist through �RLumShiny�

(Burow et al., 2016), but the graphic-presentation function-

ality is limited. Desktop- or web-based programs, such as
the AGE (Grün, 2009) and DRAC (Durcan et al., 2015), have
been developed to address the challenges of dose rate calcu-
lations. Nevertheless, one must exchange data among mul-
tiple programs to obtain the final age, which increases the
risk of involuntary errors and inconsistent error analyses. To
our knowledge, the luminescence dating community lacks an
integrated and interfaced calculation platform to determine
OSL ages such as software Calib (Stuiver et al., 2019) or
OxCal (Ramsey, 1995, 2017) for radiocarbon dating, ISO-
PLOT (Ludwig, 1988) or IsoplotR (Vermeesch, 2018) for
U-Pb dating, and CRONUS (Balco et al., 2008) or iceTEA
(Jones et al., 2019) for cosmogenic nuclide dating.

We present an integrated OSL age calculation program
with a well-defined statistical foundation, based on the Mi-
crosoft Visual Basic for Application (VBA), referred to as
‘Luminescence Dose and Age Calculator (LDAC)’, to ful-
fill a computational need for OSL geochronology. The
program is a user-friendly OSL-age-computational system
based on previously presented statistical analyses, mathemat-
ical relations and other formulations (Galbraith, 1988, 1990,
2003; Bailey & Arnold, 2006; Arnold et al., 2009; Grün,
2009; Duller, 2007, 2015; Durcan et al., 2015). The Mi-
crosoft Excel platform was chosen to provide the broadest
access and accountability for code, constants, and calcula-
tions, though certain Monte Carlo based calculations have
lag times of ∼ 1 minute. LDAC offers a computational plat-
form to determine OSL age estimates with metrics to assess
the statistical robustness of equivalent dose data (Bailey &
Arnold, 2006; Arnold & Roberts, 2009), the applicability
of statistical age models (Galbraith & Roberts, 2012) and
with up-to-date dose rate parameters (Adamiec & Aitken,
1998; Guérin et al., 2011; Liritzis et al., 2013; Durcan et al.,
2015). Included in this platform are revised computational
pathways for determining overdispersion values on small De
populations (Galbraith & Roberts, 2012), a new slice sam-
pling method to deconvolute subpopulations using the mini-
mum and maximum models (Neal, 2003), and Monte Carlo
based-calculations for the final OSL age estimate. This pro-
gram can be easily updated to improve dose rate determi-
nations, OSL age calculations, enhanced visualizations, and
as a platform to encourage inter-laboratory OSL age com-
parisons. The current version (LDAC v1.0) of this compu-
tational scheme with the code is open access to the commu-
nity at https://github.com/Peng-Liang/LDAC, where a
video highlights the capabilities of this computation pack-
age. We welcome use by the community and comments to
improve this nascent computational platform.

2. Architecture of LDAC
LDAC is an Excel VBA-based package to facilitate the

assemblage of luminescence age information and associ-
ated calculations. This software is applicable for individ-
ual equivalent dose measurements using the SAR protocol
(e.g., Wintle & Murray 2006). This computational system
has two major components for De and Dr calculation (Fig. 1),
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Figure 1. Computational pathways for the Luminescence Dose and Age Calculator (LDAC). The rectangular boxes marked with numbers
represent worksheets in LDAC, while the oval frames represent attribute information. The software has two components which are the dose
rate calculation system (green) and equivalent dose calculation system (yellow).

based on the following simplified luminescence age equation
(Aitken 1998, p. 6–11):

Age(yr) =
De (Gy)

Dr

(
Gy
yr

) , (1)

where the De is the burial dose accumulated in grains; the Dr
is the dose rate that comes from exposure to ionizing radia-
tion from α, β and γ particles in the grain, surrounding sed-
iments, and from cosmic rays (Aitken 1998, p. 37–49). This
suite of computations is based on fourteen-linked calculation
routines for applying statistical models to determine De val-
ues and render a corresponding luminescence age (Fig. 1).

The first step to use this computational package is
the entry of individual grain or aliquot De data, elemen-
tal, environmental and contextual information to calculate
sample Drwhich is organized in the “Summary” worksheet
(Fig. 1; Supplement A). Subsequent calculations of a fi-
nal De, Dr and an OSL age are presented in succeeding
workspaces with these calculations based on data entry on
to the “Summary” page (Fig. 1; Supplement A). This “Sum-
mary” page allows users to input pertinent information for
a sample, such as lab number, field number, sediment type,
sample locality and analyst. In turn, there is computation

space for Dr information, such as the U, Th, K or K2O,
Rb, water content (mass of water/mass of dry sediment), or-
ganic content, grain size, geographical coordinates, eleva-
tion, depth, overburden density and a sub-routine to calcu-
late a cosmic dose contribution. Lastly, there are data entry
spaces for parameters about the laboratory protocols, includ-
ing preheat, cut heat, and annealing temperatures, test dose,
and irradiation dose cycles (Fig. 1; Supplement A), which
are used for keeping a record.

The “Summary” page also has flexible space for the en-
try of first tier of luminescence data directly imported from
the ‘Analyst’ platform (Duller, 2007, 2018). This data in-
cludes calculated individual De values for each aliquot or
grain (for up to 5000 De values) and related parameters such
as recycling ratio, percent recuperation (Murray & Wintle,
2000; Wintle & Murray, 2006) with associated errors. Other
pertinent diagnostic metrics such as the fast ratio (Durcan &
Duller, 2011) and the infrared depletion ratio (Duller, 2003)
can also be input. Individual De values for single aliquots or
grains that fail to meet the data quality assessment metrics
(cf. Murray & Wintle 2000; Duller 2003; Durcan & Duller
2011) are marked in a reddish-pink with a toggle choice
(‘Reject’) and are removed from subsequent calculations but
stored as part of total aliquots. Designating the ‘Transfer’
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button transmits the accepted De values with standard errors
for aliquots/grains into the “De Calculation” page to visual-
ize the De data and apply statistical age models.

The “De Calculation” page includes statistical parame-
ters, graphical presentation (see section 3), and parametric
statistical models (see section 4) such as common, central,
minimum, maximum, and finite mixture age models (Gal-
braith & Green 1990; Galbraith et al. 1999; Galbraith &
Roberts 2012; Fig. 1). Normal and log-normal distributions
can be applied to all age models, except the maximum age
models, which were only designed for log-transformed data
(Olley et al., 2006; Galbraith & Roberts, 2012). LDAC of-
fers two flexible approaches to estimate the uncertainty of
overdispersion for the central age model. The first and de-
fault option utilizes the formula provided by Galbraith et al.
(1999), but this equation is often inappropriate for smaller
sample sizes (e.g., < 30 aliquots) (Galbraith & Roberts,
2012). An alternative calculation is applied by computing the
95% compatibility interval (CI) of the profile log-likelihood
function (Galbraith & Roberts, 2012), when the ‘Plot-Lik’
checkbox is chosen (see section 4.1). Application of min-
imum or maximum age models are a separate calculation
on a succeeding worksheet entitled “MAM-MAX” (Work-
sheet 3, Fig. 1). Moreover, two types of diagrams, radial plot
(Galbraith, 1988) and kernel density estimate plot (Galbraith
& Roberts, 2012), can be created in the “De Calculation”
page for data visualization (Fig. 2). The appearance of these
graphical displays can be adjusted by users with inputs for
decimal places, dot size, dot and curve color, below the plot
area in the worksheet “De Calculation”, and the dose unit
can be chosen either seconds or Grays (worksheet 2 in Fig. 1;
Supplement A). Exported figures include sample information
such as lab number, the number of aliquots/grains, overdis-
persion, age model used and final De and errors (Fig. 2). Fi-
nally, the chosen De (tick box) and the designated calculation
models will be automatically transferred to the “Summary”
page to determine the final OSL age.

Calculation of the cosmic and total environment dose rate,
final OSL age, and associated uncertainties (1σ) is actuated
by clicking the ‘Find Age’ button in the “Summary” page
(see section 5). The default option for calculating dose rate
is modified from the DRAC (v1.2), and the associated uncer-
tainties are propagated in quadrature (Durcan et al., 2015).
Propagation of uncertainties through Monte Carlo simula-
tions is also available for the final age calculation in LDAC
(see section 5.4). Highlighted dose and age calculation re-
sults of the target sample can be compiled as a *.pdf ver-
sion report via the ‘Export Report’ button (Fig. 1). This
report includes sample identification, dose rate, equivalent
dose, sequence information, error analyses, and an associated
data-based summary table. Additionally, the relevant graph-
ical presentations will be included in this report if available
(worksheet 14 in Fig. 1; Supplement B).

There are additional functionalities in the right-hand cor-
ner actuated by the ‘Show info’, the ‘Calibration’ and the
‘Import’ tabs. The ‘Show info’ allows users to display the
underlying basis of the dose-rate calculation and relevant pa-

rameters (worksheets 4 to 14, Fig. 1). The ‘Calibration’ but-
ton is used to update the strength of radiation source of the
OSL readers in the user’s laboratory to compensate for decay
changes in source strength. The ‘Import’ button can transfer
data between different versions of LDAC. To familiarize the
user with this platform, an example data set is provided after
clicking the ‘Load Example’ button on the “Summary” page.

3. Statistical parameters and graphical presen-
tation of observed De values

3.1. Statistical parameters
Statistical parameters may be useful to characterize the

De distributions for a sample based De values from indi-
vidual aliquots or grains and may assist in deciphering the
depositional environment (Bailey & Arnold, 2006; Arnold
& Roberts, 2009). LDAC provides two widely used de-
scriptive statistical parameters, including weighted skewness
(Bailey & Arnold, 2006; Arnold & Roberts, 2009) and the
chi-square (χ2) homogeneity test (Galbraith, 2003; Galbraith
& Roberts, 2012), to score the original observed data distri-
bution and help to decide which age model is statistically
appropriate.

The weighted skewness (c) is calculated as (Bailey &
Arnold, 2006):

c =
n

∑
i=1

{
wci

(
di−δ

SDe

)3
}

1
∑

n
i=1 wci

(2)

where wci =
∣∣∣ 1

σi/di

∣∣∣, di and σi are the observed De and cor-
responding standard error for an aliquot or a grain i, respec-
tively; n and sDe are the total number and standard deviation
of all valid observed De values. The δ here is the weighted
mean of observed De values (Arnold & Roberts, 2009) or
the central dose value obtained from ‘un-logged’ central age
model (see section 4.1). Note that Eq. 2 is only suitable for
original numeric values. When log-transformation is used in
data analyses (tick ‘Log-Normal’), the following equation is
applied (Arnold & Roberts, 2009):

c =
n

∑
i=1

{
wci

(
ln(di)−δ

SlnDe

)3
}

1
∑

n
i=1 wci

(3)

where slnDe is the standard deviation of the natural logarithm
De values, δ is the central value obtained from the usual (log-
transformed) common or central age model (see section 4.1).

LDAC employs the standard error of skewness σc, an ap-
proach proposed by Bailey & Arnold (2006), to test the rela-
tive statistical significance of the skewness scores calculated
by Eq. 2 or Eq. 3. The σc is approximated as (Tabachnick &
Fidell, 1996):

σc =
√

6/n. (4)

The modeling investigations of single grains De indicate that
± 2σc can be regarded as the limits for statistically signifi-
cance of the weighted skewness c (Bailey & Arnold, 2006).
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Figure 2. Example figures on “De Calculation” worksheet of radial plots (a, b) and graphs of kernel density estimate (KDE) (c, d) for sample
BG4285. Figures (a) and (c) show BG4285 data with normal scale and figures (b) and (d) display the same data with log-transformed scale.
The orange and blue colors in (c) and (d) mark the KDE curve with different bandwidth “h”, revealing potentially different equivalent dose
peaks. The grey dots and bars show the empirical cumulative distribution for equivalent dose values and ± 1 standard error.

However, a critical c value of± 1σc is a more meaningful in-
dicator of statistical significance for multi-grain data because
of the ‘averaging out’ effects (Arnold et al., 2007; Arnold &
Roberts, 2009). Although LDAC uses ± 1σc as a critical
skewness value to categorize De or log De distributions as
‘positive’ (c > σc), ‘negative’ (c < −σc) or ‘not significant’
(−σc ≤ c ≤ σc), the original c and σc values are also pro-
vided in the “De Calculation” page (Supplement A).

LDAC utilizes the ‘p-value’ of the χ2 distribution to pro-
vide a visual assessment of homogeneity of independent De
estimates (Galbraith, 2003). This homogeneity test supposes
that there are n independent observed values di±σi, and each
di is drawn from a normal distribution N(µi, σi). The null
hypothesis is that all individual values of µi are equal to an
unknown common value µ . In this case, the maximum like-
lihood estimates of µ̂ under the null hypothesis is:

µ̂ =
∑

n
i=1 widi

∑
n
i=1 wi

, (5)

where wi =
1

σi2
, and the homogeneity test statistic (G) is de-

fined by:

G =
n

∑
i=1

wi(di− µ̂)2. (6)

Then, a p-value, the probability that a random value drawn
from a χ2 distribution with n− 1 degrees of freedom is > G
(Galbraith, 2003; Galbraith & Roberts, 2012), is calculated
according to the G statistic and the degrees of freedom. The
smaller the p-value for any given number of observed values,
the stronger the evidence to reject the null hypothesis (Gal-
braith & Roberts, 2012). However, if the p-value is greater
than the conventional critical value 0.05 (a small G statistic),
then there is insufficient evidence for overdispersion, rather
than no overdispersion between observed values (Galbraith,
2003; Galbraith & Roberts, 2012). This homogeneity test
can also be applied to evaluate the agreement of paired-age
or -dose estimates (Galbraith & Roberts, 2012).

3.2. Graphical presentation
Objective statistical analyses and visual assessments for

De distributions are critical to evaluate the most appropriate
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age model (Galbraith, 1988, 2005, 2010). A useful statistical
representation of De values is with a radial plot, that displays
De values against precision (Galbraith, 1988, 2005) and is
used widely by the trapped-charge dating community (e.g.,
Bøtter-Jensen et al. 2003, p. 296–310; Arnold & Roberts
2009; Galbraith & Roberts 2012; Forman 2015; Yang et al.
2015; Guérin et al. 2017). Another useful graphical presenta-
tion is the kernel density estimate plot (Sircombe, 2004; Gal-
braith, 2010; Galbraith & Roberts, 2012; Vermeesch, 2012,
2018; Ramsey, 2017), which is a graphic representation of
continuous values that approximates the distribution as a
probability density function (Galbraith, 2010).

The radial plot reflects the data distribution, with each
value registered independently, where the y-axis is a stan-
dardized estimate and the x-axis represents the precision of
values (Galbraith, 1988). This plot supposes that there are
observed values di±σi for aliquot or grain i = 1, 2, . . . , n.
The coordinate for each point (xi,yi) is calculated by:

xi =
1
σi

and yi =
(di−d0)

σi
, (7)

where d0 is a convenient reference value (Galbraith &
Roberts, 2012). In LDAC, d0 is the value calculated based
on un-logged De values by the central age model (CAM-ul)
(see section 4.1) and the y scale is truncated at ± 2 standard-
ized estimation (Fig. 2a), which can be used as an aid to
evaluate the agreement between any individual value and a
reference value (Galbraith & Roberts, 2012). The horizontal
line y = 0 corresponds to di = d0; the ratio yi/xi is the slope
of the line from the origin point (0, 0) to the target point
(xi,yi) , which is the difference between an observed value
di and reference value d0 (Fig. 2a). The scale of the slope,
the z-axis, is displayed as an arc of a circle (Galbraith, 1988,
1990) to yield the radial nature of the plot. When the data is
log-transformed, for the observed values di with associated
standard error σi, the Eq (7) is modified to:

xi =
1

σi/di
and yi =

lndi− lnd0

σi/di
, (8)

where d0 is the value calculated by logarithmic-based central
age model (CAM) (see section 4.1). In this case, the preci-
sion in x-axis represents the reciprocal of relative standard
error and z-axis is in a natural logarithm scale (Fig. 2b).

The kernel density estimate (KDE) for a set of observed
values d1, d2, . . . , dn at x is calculated based on the Gaussian
kernel as follows:

KDE(x) =
1
n

n

∑
i=1

[
1

h
√

2π
exp

(
−1

2

(
x−di

h

)2
)]

, (9)

where h is known as smoothing parameter ‘bandwidth’ that
plays an important role in KDE (Silverman 1998, p. 43–59).
As h varies there will be variable resolution of the density
curve depicting varying peaks of the data distribution (Silver-
man 1998, p. 43–59; Galbraith & Roberts 2012; Vermeesch
2012; Fig. 2c, d). The default method for KDE representa-
tion is ‘adaptive bandwidth’ which varies with the density of

the data (Botev et al. 2010; Supplement C). This method uses
a narrower bandwidth near the dense data distribution and
a wider bandwidth near the sparse data distribution (Botev
et al., 2010; Vermeesch, 2018). Thus, the resolution of the
KDE curve is optimized by the data availability (Vermeesch,
2018). A constant bandwidth for KDE derived from Silver-
man (1998, p. 45–49) and user-defined values (Supplement
C) are also available. Moreover, a probability density func-
tion method, where the bandwidth h in Eq. 9 is replaced by
the analytical uncertainties σi, is provided when the band-
width method ‘PDF plot’ is chosen (Supplement C). A con-
tinuous KDE curve does not directly reflect the original data
distribution, so the individual De values with errors are plot-
ted on the KDE graph in rank order as an empirical distri-
bution function (Fig. 2c, d; Galbraith & Roberts 2012). Ad-
ditionally, the KDE can be calculated with log-transformed
data, when di in Eq. 9 is altered to lndi (Fig. 2d).

4. Age models for De determination
The complexity of depositional processes, environmental

microdosimetry, and individual mineral grains response to
optical stimulation may result in De values measured from
separate aliquots or grains exhibiting significant scatter (Ja-
cobs & Roberts, 2007; Arnold & Roberts, 2009; Galbraith &
Roberts, 2012; Cunningham & Wallinga, 2012; Guérin et al.,
2017). Thus, it is usually inappropriate to analyze such De
data by assuming a simple Gaussian distribution, by using
the weighted average method (Taylor 1997, p. 173–179),
known as the common age model (Supplement C; Galbraith
2005, p. 47–50; Galbraith & Roberts 2012). Fortunately,
there exists other statistical models that are more appropri-
ate metrics for non-Gaussian data distributions. This section
focuses on presenting the logic and mathematical bases for
the application of the much used central, minimum and max-
imum age models to De data; the statistical principles of the
common and finite mixture age models are discussed in the
supplementary information (Supplement C).

4.1. Central age model
The central age model (CAM) is commonly adopted to

determine a final De value for well solar reset sediments,
such as aeolian sand (e.g., Forman et al. 2014; Yang et al.
2015; Hesse et al. 2018; Tamura et al. 2019). The CAM as-
sumes that De values are not consistent even if the measure-
ment errors σwi are considered, and the natural logarithm of
true De (ln De) values are drawn from a normal distribution
with central dose δ and standard deviation σ (Galbraith et al.,
1999; Galbraith & Roberts, 2012). The standard deviation σ ,
also known as overdispersion, denotes an additional disper-
sion after accounting for within-aliquot/grain measurement
errors (Galbraith & Roberts, 2012). The central dose δ and
overdispersion σ are estimated with simultaneous evaluation
of the following three equations (Galbraith et al., 1999):

wi =
1

σ2 +σwi
2 (10)
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Figure 3. Examples of profile log-likelihood function for the overdispersion in the central age model. (a) Illustration of the algorithm for
calculating the standard error of overdispersion based on profile log-likelihood function (BG4285). The limits of 95% comparability interval
were calculated by searching the values of σ to fulfill Lσ −Lmax = 1.92 on this profile log-likelihood function. Sequential the calculation
entails, first, give an initial step (brown arrow) to cross over the line Lσ −Lmax = 1.92 and find the brown point 1©. Then, give a finer step
(green arrow) to go back and cross over the line 1.92 again to find the green point 2©. Repeat this calculation until a fine limit 5©, under the
tolerance (0.01%), was reached. The calculation of lower limit is same. (b) An example of output shows the profile log-likelihood function for
overdispersion parameter σ in the un-logged central age model (CAM-ul); in this case, the overdispersion and associated error are expressed
in grays (Gy).

δ =
∑

n
i=1 widi

∑
n
i=1 wi

(11)

n

∑
i=1

wi
2 (di−δ )2 =

n

∑
i=1

wi (12)

where di and σwi are the natural logarithm of observed De
value and relative standard error for aliquot or grain i, respec-
tively. When overdispersion σ is zero, the CAM is math-
ematically equivalent to the common age model (Galbraith
& Roberts, 2012). These equations are solved by starting
with an initial σ = 0.5 (overdispersion is 50%), and calcu-
late wi for each i based on Eq. 10, and then calculate δ based
on Eq. 11; this calculation iterates and updates sequentially

with an σ = σ(
∑

n
i=1 wi

2(di−δ )2

∑
n
i=1 wi

). Once the parameters σ and

δ satisfy Eq. 12 with ∑
n
i=1 wi

2(di−δ )2

∑
n
i=1 wi

= 1 (assuming wi 6= 0),

appropriate estimates, σ̂ and δ̂ , are derived.
LDAC provides two methods to estimate the standard er-

ror of the overdispersion. For large sample populations, the
standard error (se) could be approximately (Galbraith et al.,
1999):

se (δ ) =

√
1

∑
n
i=1 wi

(13)

se(σ) =

√
1

2σ2 ∑
n
i=1 wi2

(14)

The above se(σ) can be unreliable for smaller sample popu-
lations (e.g., < 30) (Galbraith & Roberts, 2012). In this case,

an alternative calculation is executed using the ‘profile log-
likelihood function’ to provide an assessment of the standard
error of the overdispersion. This method constructs a profile
log-likelihood function of Lσ against σ (Galbraith & Roberts,
2012), where

Lσ =
1
2

n

∑
i=1

{
ln wi−wi (di−δ )2

}
. (15)

When σ equals the maximum likelihood estimated overdis-
persion σ̂ , the Lσ has its maximum value Lmax and it de-
creases as σ departs from σ̂ . Based on the large-sample
maximum likelihood theory and the likelihood-ratio test, ap-
proximate boundaries of 95% CI are values of σ for which
Lσ is within 1.92 of Lmax (Cox 2006, p. 96–106; Gal-
braith & Roberts 2012). These coarse boundaries are eval-
uated by searching for threshold values of σ for which
(Lσ −Lmax)≤ -1.92 from σ̂ to either direction with an initial
step S0 (e.g., S0 = 5% of σ̂ ) in the profile log-likelihood func-
tion (Fig. 3a). This calculation is iterated sequentially with
10% of the previous step as a new value (e.g., 10% of S0) to
resolve finer compatibility intervals (Fig. 3a). A symmetric
standard error of σ̂ is calculated by dividing the length of this
95% CI by 3.92 when the distribution of σ is assumed to be
Gaussian (Cox 2006, p. 64–93; Galbraith & Roberts 2012).

A challenge for luminescence dating is that the usual
(natural logarithm transformed) CAM may be unsuitable
for young sediments (e.g., < 350 a) because of low signal
to noise ratio and the preponderance of negative De values
(Arnold et al., 2009; Galbraith & Roberts, 2012). Conse-
quently, an un-logged central age model (CAM-ul) was de-
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signed for samples which contains grains with near-zero or
negative De values (Arnold et al., 2009). In this case, the di
is the original De values for each aliquot or grain i, and the
σwi is the absolute rather than relative standard error. The
absolute overdispersion and 95% CI is calculated and shown
graphically as a profile log-likelihood function (Fig. 3b). If
the overdispersion σ̂ for CAM-ul equals 0, the estimate δ

given by Eq. 11 is mathematically equivalent to ‘inverse vari-
ance weighted mean’ of the observed De values (Taylor 1997,
p. 173–179; Galbraith & Roberts 2012).

4.2. Minimum age models
4.2.1 Statistical principle of minimum ages models

The minimum age model (MAM) is designed for sedi-
ments that contain a mixture of grains with different solar-
resetting histories, with inherent varying luminescence emis-
sions (Galbraith et al., 1999; Galbraith & Roberts, 2012).
Though mineral grains in a sedimentary unit may have an
equivalent burial time, the component grains yield varying
equivalent doses, indicating grain populations were not fully
solar reset prior to burial (Galbraith et al., 1999; Preusser
et al., 2009). These partially bleached sediments are typically
characterized by high overdispersion (> 0.25) of De distribu-
tions (Rodnight, 2008; Galbraith & Roberts, 2012). In such
cases, the MAM may be most suitable to determine the De
for the burial period. The MAM assumes that the burial lnDe
values are drawn from a truncated normal distribution, where
γ denotes the lower truncation point and corresponds to the
average burial lnDe of the well solar-reset grains. The pro-
portion of well-bleached grains is denoted by p; the partially
bleached grains have larger doses which are drawn from a
truncated normal distribution with parameters µ and σ (Gal-
braith et al., 1999; Galbraith & Roberts, 2012). Note that
if the ln De distribution were not truncated, it would have a
mean µ and a standard deviation σ as δ and σ for the central
age model (Galbraith et al., 1999).

For the MAM, LDAC calculates the probability density
function fi for a ln De value di based on (Galbraith et al.,
1999; Galbraith & Roberts, 2012):

si
2 = σwi

2 +σb
2 (16)

µ∗ =

µ

σ2 +
di
si2

1
σ2 +

1
si2

(17)

σ∗ =
1√

1
σ2 +

1
si2

(18)

f1i =
1√

2πsi2
exp

(
− (di− γ)2

2si2

)
(19)

f2i =
1√

2π (σ2 + si2)

1−Φ

(
γ−µ∗

σ∗

)
1−Φ

(
γ−µ

σ

) exp

(
− (di−µ)2

2(σ2 + si2)

)
(20)

fi = p f1i +(1− p) f2i (21)

where di and σwi are the same as the parameters in Eqs. 11
and 12; Φ(•) is the cumulative distribution function of
N(0, 1); f1i and f2i are the contribution from the well-
bleached component and partially bleached component, re-
spectively. Another important parameter in this age model is
σb in Eq. 16, which is a likely overdispersion for the expected
population of well-bleached grains, such as between-grain
variation in a heterogenous dose environment (‘hot grains’)
(Jacobs & Roberts, 2007; Guérin et al., 2015). This σb is in-
dependent of within-grain or aliquot measurement error and
inhomogeneous solar resetting (Galbraith et al., 2005; Cun-
ningham & Wallinga, 2012). An appropriate σb is difficult
to measure for mixed grain populations with variable De but
can be assessed from well solar reset mineral grains from the
same source (Galbraith & Roberts, 2012). Overestimating
or underestimating the σb will lead to corresponding older
and younger age estimates. In LDAC, we use a default σb
of 0.11 ± 0.04 (11 ± 4%) for multi-grain data consistent
with the value recommended by Cunningham & Wallinga
(2012). However, it is advised to evaluate σb for each sam-
ple dated (Galbraith et al., 2005; Cunningham & Wallinga,
2012). Thus, users can input other σb values in the “MAM-
MAX” worksheet (Supplement A). Hence, the four unknown
parameters p, γ, µ and σ in Eqs. 16–21 can be estimated
when the log-likelihood L is a maximum, where

L(di, σwi |p, γ, µ, σ) =
n

∑
i=1

ln fi. (22)

Some data sets with a small number of valid values or less
dispersed distributions, may be uncalculatable with the above
four-parameters model (MAM-4). Thus, it may be suitable
to apply a simpler three parameters model in which µ = γ

(MAM-3) (Galbraith et al., 1999). As with the CAM, this
natural logarithm-transformed MAM may be unsuitable for
sediments that have a De < 0.50 Gy, with significant zero and
negative values which are consistent with zero dose within 2
standard errors (Arnold et al., 2009; Galbraith & Roberts,
2012). In this case, the un-logged minimum age model
(MAM-ul) is used, which supposes that the actual De instead
of lnDe values are drawn from a truncated normal distribu-
tion, where γ denotes the lower truncation point and cor-
responds to the average burial De of well-bleached grains
(Arnold et al., 2009). Thus, the parameters di and σwi in
Eqs. 16–22 are referred to the actual dose and absolute stan-
dard error, rather than log-transformed and relative standard
error scale. Likewise, the σb of MAM-ul in Eq. 16 is the
absolute overdispersion (Gy) instead of the relative overdis-
persion (%) of well-bleached grains.

4.2.2 Markov chain Monte Carlo slice sampling for pa-
rameters estimation

There is need for computational tools to estimate the four
parameters p, γ, µ and σ for the MAM (Eqs. 16–22). Of-
ten these values and associated standard errors are computed
numerically through an optimization program such as For-
tran program ‘minim’ (Galbraith et al., 1999) or maximum
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Figure 4. Procedures for estimating the parameters for the minimum age model (Galbraith & Roberts, 2012) using Markov chain Monte
Carlo (MCMC) slice sampling method (Neal, 2003). (a) Processes for defining the “slice” (bold line), positioning an initial interval I0, and
expanding the I0 to I = (L, R) in incremental steps w to include the slices as more as possible. (b) Initiate a calculation at point x1 uniformly
from the interval I until a value is found inside the slice. Values outside the slice (e.g., the red dots “×”) are used to shrink the interval. (c)
MCMC iterations using the procedures of (a) and (b) to obtain the distribution of f(x).

likelihood estimation package `bbmle' in R (Bolker & R
Development Core Team, 2017). However, these packages
are incompatible with an Excel VBA-based computational
system. A well-adapted replacement is through ‘slice sam-
pling’ based on the Markov chain Monte Carlo (MCMC)
method (Gilks et al. 1996; Neal 2003; Brooks et al. 2011, p.
215–219; Peng et al. 2013), which was initially used by an
R package `numOSL' to solve the MAM parameters (Peng
et al., 2013). The basis of this algorithm is that any unknown
distribution can be obtained by sampling uniformly from a
region under a probability distribution curve, applying an
MCMC algorithm (Neal 2003; Vermeesch 2007; Fig. 4). The
procedures of single-variable slice sampling are outlined in
Table 1 and shown in Fig. 4 (Neal, 2003).

The advantage of the slice sampling is that it is appropri-
ate for a single-variable distribution (Neal, 2003). This com-
putation is adept at sampling a multivariate distribution such
as L(x) in Eq. 21 for x = (p,γ, µ,σ), by repeatedly updat-
ing each variable in turn (Neal, 2003). This slice sampling
method is more efficient through ‘stepping out’ and ‘shrink-
age’ procedures (Neal, 2003) than the other Markov chain
methods such as Gibbs sampling (Gelfand & Smith, 1990)
and adaptive-rejection Metropolis sampling methods (Gilks
et al., 1995; Vermeesch, 2007). In LDAC, the MCMC slice
sampling (Table 1) is used to estimate the maximum likeli-
hood parameters for the MAM, based on Eq. 21 and rotation-
ally update parameters (Table 2).

The fundamental prerequisite for applying the MCMC al-
gorithm to estimate parameters and associated uncertainties
for a distribution is that the Markov chain attains conver-
gence states (Gilks et al. 1996; Cowles & Carlin 1996; Neal
2003; Brooks et al. 2011, p. 163–174). Several diagnostic

tools can be applied to assess the steps for value convergence
(Cowles & Carlin, 1996). In LDAC, trace plot, marginal
density, and autocorrelation function (ACF) are employed to
evaluate the convergence states of a Markov chain analysis
(Fig. 5). A trace plot shows the trajectories at each MCMC it-
eration and is a straightforward graphic to assess the conver-
gence of a Markov chain (Gilks et al., 1996; Plummer et al.,
2006; Philippe et al., 2019). The Markov chain reached a sta-
ble state if the trace plot displays a random distribution with
a relatively constant mean and variance (Brooks et al. 2011,
p. 163–174; Philippe et al. 2019). In LDAC, the default num-
ber of iterations is n = 1800, which balances the convergence,
precision, and efficiency of the MAM calculations. An un-
suitable initial value affects the initial behavior of a Markov
chain within finite iterations (see Fig. 5). Thus, we use a
‘burn-in’ strategy (Gilks et al. 1996; Brooks et al. 2011, p.
19–23), which discards the first t iterations of a Markov chain
analysis, to reduce the influence of initial values and use ex-
clusively the stationary values for estimation of parameters.
Another graphical assessment method is the autocorrelation
function, which monitors the correlation between states of
the Markov chain (Brooks et al. 2011, p. 163–174). High
sampling autocorrelation may result in a biased standard er-
ror for Monte Carlo iterations (Gilks et al., 1996). LDAC
computations use a conventional ‘thinning’ method (Gilks
et al. 1996; Brooks et al. 2011, p. 163–174), with every kth
iteration stored, to reduce autocorrelation between consecu-
tive iterations. The default values for burn-in and thinning in
LDAC are 200 and 4, respectively. Consequently, the num-
ber of MCMC iterations used for final parameter estimation
is [(n− t)/k] (in LDAC, 400). Users can adjust (increase)
the default values for Monte Carlo iterations, burn-in inter-
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Table 1. The ‘stepping out’ and ‘shrinkage’ procedures for Markov chain Monte Carlo (MCMC) slice sampling method for Minimum Age
Model calculations.

Step Calculation Notes

1 Give an initial value, x0, and calculate f (x0); x0 and f (x0) in Fig. 4a

2 Draw an auxiliary value at vertical level, y ,uniformly from
(0, f (x0)), thereby defining a horizontal ‘slice’: S = {x : y < f (x)};

The bold gray lines in Fig. 4

3 Give a rough estimate, w, for the scale of S (w is estimated prior to
slice sampling and keep constant);

Fig. 4

4 Pick randomly an initial interval I0 = (L0, R0), which size equals
w, containing x0;

I0 is the green line in Fig. 4a and the
length of I0 = w

5 Expand the initial interval I0 by ‘stepping out’ procedure (Neal,
2003) until f (L) ≤ y and f (R)≤ y ; we get an interval as
I = (L, R);

The thin solid green line in Fig. 4a;

6 Draw a new point x1 uniformly from the interval I using
‘shrinkage’ method (Neal, 2003). If the f (x1)< y, reject the value,
shrink the interval I and repeat the uniform sampling within the
new interval again, until f (x1)≥ y.

The rejection points and shrinkage
procedures are illustrated in Fig. 4b.

7 Set the new point x1 as current point x0 and return to 1. The MCMC iteration is illustrated in
Fig. 4b,c

Table 2. Protocol for applying the single-variable slice sampling method outlined in Table 1 to estimate parameters from a multivariable
distribution.

Step Procedure Calculation

1 Calculate the lower and upper limits of p,γ,µ,σ ; p ∈ [0, 1]; γ ∈ [min(di) , max(di)];
µ ∈ [min(di) , max(di)]; σ ∈ [0, 10];

2 Give initial values of p,γ,µ,σ within their range; p0,γ0,µ0,σ0; both default and user-defined values
are available;

3 Calculate new points p1,γ1,µ1,σ1 using the
single-variable slice sampling method and save these
values in a matrix [ j,k] ( j represents the time of
iterations; k represents the number of parameters);

p1 = slice sampling(L(p0|γ0,µ0,σ0,di,σwi));
γ1 = slice sampling(L(γ0|p1,µ0,σ0,di,σwi));
µ1 = slice sampling(L(µ0|p1,γ1,σ0,di,σwi));
σ1 = slice sampling(L(σ0|p1,γ1,µ1,di,σwi));

4 Set p1,γ1,µ1,σ1 as new p0,γ0,µ0,σ0 and return to 2; Start Markov chains iteration j+1 until hit the limit
on iterations.

Note: slice sampling (•) is a single-variable slice sampling calculation function based on Table 1.

actions and thinning to ensure the convergence states are re-
liably reached. Finally, the central value and 95% CI of the
estimated parameters are calculated based on the arithmetic
mean, 2.5% and 97.5% quantiles from the stationary MCMC
results (Brooks et al. 2011, p. 175–197). The standard errors
of parameters are estimated by dividing the length of 95% CI
by 3.92 (Cox 2006, p. 64–93; Galbraith & Roberts 2012).

4.2.3 Validation of slice sampling MAM

A simulated data set was fabricated by mixing De data of two
disparate samples to test the veracity of the slice sampling for
resolving the youngest De population by the MAM. The first
sample is well-bleached quartz grains with an overdispersion
of 4 ± 2 % and a De (CAM) of 47.7 ± 0.7 Gy (n = 30)

(Table 3; Fig. 6a). The second sediment is poorly-bleached
and contains three significant De components, displaying a
high overdispersion (37 ± 3%) with an apparent De (CAM)
of 158.5 ± 7.1 Gy (n = 70) (Table 3; Fig. 6b). The two
simulated sediments have an average relative standard error
of 6 ± 1.5% (Fig. 6). The two data sets are combined (n =
100), and the aliquots from each sample are traced by two
different colors: red for well solar reset data set and green
for the high dispersed data (see Fig. 6c). The overdispersion
of this mixed, synthetic sample is 63 ± 5 % and the apparent
De calculated by CAM is 110.4 ± 7.0 Gy (Fig. 6c).

The slice-sampled MAM approach was tested using the
MAM-4 computations in LDAC. A total of 1800 iterations
of MCMC slice sampling were implemented. The first 200
iterations of the MCMC were discarded (‘burn-in’) and ap-
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Figure 5. An example of Markov chain Monte Carlo sampling without ‘burn-in’ and ‘thinning’ showing graphical diagnostics such as trace
plots (upper), marginal densities (middle) and evaluation of autocorrelation (ACF) (lower). There is high autocorrelation until after lag-3
analysis.

plied a data thinning routine of registering every 4th value to
avoid autocorrelation. The trace, KDE and autocorrelation
plots demonstrate stationarity of the Markov chain analysis
(Fig. 7). Finally, 400 iterations (after burn-in and thinning)
were used to estimate p, γ, µ and σ and their 95% CI (Ta-
ble 3; Fig. 7). The default initial values given by MAM-4 in
this experiment are p0 = 0.5, γ0 = 3.93 (normal scale: 50.91
Gy), µ0 = 4.7 (normal scale: 109.95 Gy) and σ = 4.87. The
σb is 0.0438 ± 0.0173 which is the overdispersion of the
well-bleached component of this synthetic sample (Fig. 6a).
The results of this experiment indicate that the slice sampling
MAM can reliably separate the lowest synthetic De associ-
ated with the well solar-reset subpopulation (Table 3).

4.3. Maximum age models
The maximum age model (MAX) was proposed for sed-

iments that are suspected to be disturbed or mixed by pro-
cesses that lead to partial or full solar resetting of grains

post deposition, such as pedogenesis or other biogenic ac-
tivities (Olley et al., 2006; Galbraith & Roberts, 2012; Ahr
et al., 2013). The MAX computation model shares the same
assumption and statistical principle with the MAM (sec-
tion 4.2.1), but the γ is defined as the upper truncation point
of the truncated log-normal distribution of true De values
(Olley et al., 2006; Galbraith & Roberts, 2012). As with
the MAM, LDAC provides three and four parameters maxi-
mum age models (MAX-3 and MAX-4, respectively) follow-
ing the method developed by Olley et al. (2006). The same
equations and parameters estimation methods as the MAM
are used, but the di in Eqs. (16-22) is changed to

di =− lnDei + ln [Max(De)] , (23)

where Dei is the observed value from single aliquot or grain
i, Max(De) is the maximum value of all observed Des. The
purpose of this conversion process is to create a ‘mirror im-
age’ of the original data distribution (Olley et al., 2006).

Table 3. The results of slice sampling for Minimum Age Model-4 (MAM-4) for the simulated sample.

Parameters Known values (± 1σ)
MAM-4 estimates (LDAC)

Asymmetric CI (95%) Standard error (± 1σ)

p 0.30 0.300+0.10
−0.08 0.300 ± 0.045

γ 47.66 ± 0.65 Gy 47.59+1.46
−1.30 Gy 47.59 ± 0.71 Gy

µ 158.49 ± 7.10 Gy 157.17+14.08
−16.37 Gy 157.17 ± 7.77 Gy

σ 0.37 ± 0.03 0.386+0.07
−0.06 0.386 ± 0.033
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Figure 6. The unmixed (a and b) and mixed (c) simulant samples used in validation for Minimum Age Model (MAM). (a) shows equivalent
dose distribution of a well solar reset component with 4 ± 2% overdispersion; (b) illustrates partially solar reset component which includes
three sub-populations and with 37 ± 3% overdispersion. (c) Distribution of the mixed sample and the MAM-4 result.

As with the MAM, the MCMC slice sampling method (sec-
tion 4.2.2) is used to estimate the upper truncation point, γ .
The σb value is vital for the accuracy of MAX, and this value
can be estimated from the associated parameters for well-
bleached equivalent grains (Olley et al., 2006).

5. Environmental dose rate (Dr) and final age
calculation

The environmental Dr of sediments that induces lumines-
cence is from α, β and γ radiations from the radiative decay
of the U and Th series, 40K, 87Rb and from cosmic-galactic
components (Aitken 1985, chapter 4). The Dr is often cal-
culated from the concentrations of radionuclides in the sur-
rounding sediments within 30 cm radius of the sampling site
based on the assumptions of an infinite matrix and secular
equilibrium in the U and Th series (Aiken, 1998, p. 37–
41; Guérin et al. 2012). The total environmental Dr for a

particular grain size includes attenuation of external and in-
ternal dose contributions for grain-size, chemical etching of
the alpha-affected outer 5 to 10 µm of grains and inferred
sediment water content during the burial period, and cosmic
dose components. The calculations for Dr in LDAC are sim-
ilar to DRAC (Durcan et al., 2015), but with modifications
discussed below.

5.1. Conversion and attenuation factors

LDAC offers three conversion factor options for dose con-
tributions from α, β and γ components, as an infinite matrix
dose, including ‘Adamiec1998’ (Adamiec & Aitken, 1998),
‘Guérin2011’ (Guérin et al., 2011) and ‘Liritzis2013’ (Lir-
itzis et al., 2013) (worksheet 6 in Fig. 1). The given con-
version factors assume secular equilibrium of U and Th de-
cay series with no Radon loss (Aitken 1985, chapter 4). The
uncertainties of the conversion factors derived from Liritzis
et al. (2013) are applied proportional to the three data sets
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Figure 7. Estimation of the parameters p, γ, σ, and µ in minimum age model-4 for the simulant sample of Fig. 6c using the Markov chain
Monte Carlo slice sampling method. The iteration times, burn-in, and thinning are 1800, 200 and 4, respectively.

following (Durcan et al., 2015). Users are required to in-
put concentrations of U, Th, Rb in ppm and K or K2O in %
in the “Summary” page. The internal radionuclide concen-
tration or dose rates and user-specified dose rates estimated
through other methods, such as beta counting (Cunningham
et al., 2018), can be input in the bottom panel of the “Sum-
mary” page and incorporated into subsequent attenuation as
an option (Supplement A).

Several attenuation factors are considered in dose rate
calculations including by grain size, from chemical etching
(e.g., HF) of grain surface, by water content and a-value for
alpha radiation (Aitken 1985, p. 252–263). Previously vet-
ted attenuation factors are used in LDAC (e.g. Durcan et al.
2015) (worksheets 7-10 in Fig. 1). The default parameters for
α and β attenuation by grain size and after chemical etching
are from Brennan et al. (1991), Guérin et al. (2012), Bell
(1980) and Brennan (2003), respectively. Alternative ear-
lier parameters can be chosen on the “Summary” page (Sup-
plement A) for β attenuation by grain size (Mejdahl, 1979;

Brennan, 2003) to facilitate Dr comparison with previously
published calculations. Grain size attenuation effects for α
and β radiation is corrected with a resolution of 1 µm and
a grain size range of 1 to 1000 µm (worksheet 7-8; Dur-
can et al. 2015). The factors and associated uncertainties
are determined for the mean value and associated standard
deviations corresponding to a grain size range (e.g., 150 –
250 µm). Similarly, the chemical etching attenuation factors
are calculated with 1 µm resolution to a removal depth of 1
to 30 µm (worksheet 9-10; Durcan et al. 2015). A γ scal-
ing factor is used to correct the contribution from inert air,
for sediments collected at depths from < 30 cm of the ground
surface (Aitken 1985, p. 289–296; Durcan et al. 2015; work-
sheet 11 in Fig. 1). These attenuated dry dose rates are ad-
justed for the water content with the attenuation factors for
α, β and γ of 1.49, 1.25 and 1.14, respectively (Aitken 1985,
p. 74–76; Grün 1994; Durcan et al. 2015).
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Figure 8. Standard cosmic dose rate (D0) at different depths be-
low surface. The black dots are the original measured data from
bryozoan limestone in the southeast of South Australia (Prescott &
Hutton, 1988). The white square data point at 1.67 hg/cm2 is from
Barbouti & Rastin (1983), and the white square at zero depth is
from Kyker & Liboff (1978). The green and orange line show fitted
curved defined by Eq. 24 and Eq. 25, respectively. The lower panel
shows the D0 residual between measured and fitted data. The con-
stants of the equation are C = 6072, B = 5.50×10-4, d = 11.6, α =
1.68, a = 75 and H = 212 (Prescott & Hutton, 1994).

5.2. Cosmic Dose Rate
The cosmic dose rate (Dc) is an integral part of the eval-

uation of the Dr, particularly for low dose sediments. The
Dc calculation in LDAC follows the protocol outlined by
Prescott & Hutton (1994). The standard cosmic dose rate
(D0) is calculated at sea level at a geomagnetic latitude of
55° for a given depth and overburden density using the fol-
lowing equations:

D0 = 0.0649x4−0.2411x3 +0.3233x2

−0.2339x+0.2937,

x < 1.67 hg/cm2,

(24)

or

D0 =
6072

[(x+11.6)1.68 +75](x+212)
e−0.00055x,

x≥ 1.67 hg/cm2,

(25)

where x (hg/cm2, equals to 100 g/cm2) is the product of sam-
pling depth below ground surface (m) and average overbur-
den bulk density of the sediments (g/cm3).

Eq. 25 from Prescott & Hutton (1994) is used to calcu-
late D0, but as pointed out by the authors, it is not valid for
depths shallower than 1.67 hg/cm2 (Aitken 1985, p. 297–
298; Fig. 8). The principal components of the cosmic dose in
the atmosphere are ionized electrons and muons, with a neg-
ligible contribution from heavier particles (Prescott & Hut-
ton, 1988). The ‘soft’ component (electrons) of cosmic rays
is attenuated with increasing depth into sediments, with pen-

etrating limited at density depth of 1.5 ~ 1.67 hg/cm2 (Bar-
bouti & Rastin, 1983; Prescott & Hutton, 1988). The remain-
ing ‘hard’ component (muons) is less readily attenuated, and
it can penetrate to considerable depths, with decreasing in-
tensity (Prescott & Hutton, 1988). The prototype of Eq. 25
is an empirical relationship between the vertical muon in-
tensity and depth (Barbouti & Rastin, 1983), and only con-
siders the ‘hard’ component of the cosmic rays. This equa-
tion (Eq. 25) excludes the ‘soft’ component (electron) of cos-
mic rays at depth shallower than 1.67 hg/cm2 (Durcan et al.,
2015; Burow, 2018). The residual between the ‘hard’ and
‘soft’ data sets for dose attenuation with depth is derived
from measured cosmic dose from a bryozoan limestone in
southeastern South Australia (orange triangles in Fig. 8). We
translated the original measurement values from Figure 1 of
Prescott and Hutton (1988) using MATLAB; the data points
< 1.67 hg/cm2 were fitted with a 4-degree polynomial func-
tion (Eq. 24; Fig. 8). LDAC adopts Eq. 24 to calculate the
D0 for depth between 0 and 1.67 hg/cm2, because it includes
both the ‘soft’ and ‘hard’ components in evaluating the cos-
mic dose rate, which is an accurate assessment.

The D0 is then corrected by F, J and H values based on
the geomagnetic latitude and altitude for the dated sediment
(Prescott & Stephan, 1982; Durcan et al., 2015). The effect
of known variations of the geomagnetic field is corrected for
dose rate estimates for the late Pleistocene (Prescott & Hut-
ton, 1994). Users can choose an estimated age range (0 – 5,
5 – 10, 10 – 15, 20 – 35, 35 – 50, 50 – 80 and > 80 ka) from the
‘Age Estimate’ tab (Fig. 9a) in the “Summary” worksheet.
This value, together with altitude and the geomagnetic lati-
tude converted from geographical coordinate, are applied to
determine the geomagnetic field fluctuation factor ( fg) and
altitude factor ( fh) (Prescott & Hutton 1994; Fig. 9). Conse-
quently, the final equation for cosmic dose rate is:

Dc = D0 · (F + J · e(h/1000)/H) · fh · ( fg−1) (26)

where F, J and H are the correction parameters of altitude and
geomagnetic latitude (Prescott & Hutton, 1994; Durcan et al.,
2015); h is the altitude of the sampling site (in m a.s.l.); fg
is the correction factors for cosmic ray flux change resulting
from geomagnetic fields variations (Fig. 9a); and fh is the
factor for adjusting fg for altitude (Fig. 9b). LDAC assigns
an uncertainty of ± 10% for the calculated Dc (Prescott &
Hutton, 1994). User-defined cosmic dose rate can also be
input in the “Summary” page, if necessary.

The overburden density influences the accuracy of Dc
calculation. LDAC allows users to input an estimated
average bulk density different from the default value of
1.6 ± 0.1 g/cm3, which is based on the investigation of soil
dry bulk density, such as loess (1.1 – 1.8 g/cm3) and aeolian
sand (1.3 – 1.8 g/cm3) with adjustments for field moisture
content (Logsdon & Karlen, 2004; Wang et al., 2014).

5.3. Final Age calculation
The Dr is computed by the sum of all attenuated radionu-

clide components which include DU
α , DU

β
, DU

γ , DTh
α , DTh

β
,
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Figure 9. Correction factors for adjusting geomagnetic field variations for time (a) and altitude (b) (Prescott & Hutton, 1994).

DTh
γ , DK

β
, DK

γ , DRb
β

, and the cosmic dose rate Dc. LDAC cal-
culates the final age based on Eq. 1; the mean dose rate and
age is calculated from mean values before rounding to two
significant figures. The dose rate and associated uncertainty
are reported in the “Summary” page at two significant figures
(e.g., 2.75 mGy/yr). The final age is reported to the nearest 5-
year increment if < 50 ka and rounded to the nearest 10-year
increment for ages > 50 ka, reflecting inherent resolution.

5.4. Error propagation
LDAC provides two approaches to evaluate the uncertain-

ties of the environmental dose rate and hence the final age.
The first one is based on quadrature (Aitken 1985, p. 241–
251; Taylor 1997, p. 45–92). However, all uncertainties
propagated in quadrature will underestimate the total error
because parts of dose rate from γ, β and α are correlated,
which share the same source of errors from nuclide measure-
ments (Grün 1994; Grün 2009; Taylor 1997, p. 45–92). To
overcome this drawback, LDAC computes and attenuates the
α, β and γ radiations from each nuclide independently in all
steps and propagates the errors in quadrature separately in
each step. Until the last step, all errors are combined based
on:

σDr =

√√√√√√√√
(

σDU
α
+σDU

β

+σDU
γ

)2

+

(
σDTh

α
+σDTh

β

+σDTh
γ

)2

+
(

σDK
β

+σDK
γ

)2
+

(
σDRb

β

)2

+(σDc)
2

(27)

σage = Age

√(
σDe

De

)2

+

(
σDr

Dr

)2

, (28)

where σDU
β

is the uncertainty of attenuated β dose rate (in-

ternal and external) emitted by U; it combines the random
and systematic errors from nuclide measurement, conversion

factors, attenuation factors and water content in quadrature.
All other subscript of each σ has a corresponding meaning.

The second method for propagating the uncertainties in
the final age estimate from all data sources is through Monte
Carlo simulations. This approach is commonly used in nu-
meric analysis to more faithfully propagate the uncertain-
ties that are statistically robust (e.g., Anderson 1976; Duller
2007; Vermeesch 2007; Shao et al. 2014). This analysis as-
sumes that each numeric value of input variables (e.g., U,
Th, K, Rb, water contents), conversion and attenuation fac-
tors and their associated errors are represented by a Gaussian
distribution of possible values. A large amount of repeated
Dr and age calculations (e.g., 1000) are undertaken with
stochastic values drawn from the independent Gaussian dis-
tributions (Shao et al., 2014). The 68.3% CI is evaluated by
the 15.85 % and 84.15 % quantiles of outputs of the Monte
Carlo simulations, and this asymmetric age interval is avail-
able in the final report (Supplement B). The 1σ uncertainties
for the Dr and the final age are determined by the standard
deviations of the Monte Carlo results (Cox, 2006). The de-
fault Monte Carlo iteration times in LDAC is 1000 which
can be modified. This Monte Carlo simulation is a stochastic
numeric analysis to propagate estimates of the total uncer-
tainties, and thus these uncertainties will vary slightly with
each calculation (Duller, 2007). The central values of Dr and
OSL age are still calculated based on the input values rather
than the mean of the Monte Carlo outputs.

5.5. Comparisons with other calculation packages
All algorithms for equivalent dose and dose rate calcu-

lations in LDAC are well developed by the community in
the past thirty years. The key merit of the LDAC is assem-
bling the most used functions for calculating the lumines-
cence age to one package. To test the consistency between
LDAC (v1.0) and other existing calculation tools, we com-
pared both the De and Dr calculated by different published
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Table 4. Comparison between equivalent doses (De) calculated by LDAC and R `Luminescence' package. BG4285 is the example data set
of LDAC (v1.0) and the ‘simulated sample’ is the data set used in Section 4.2.3

Sample Software
CAM

MAM MAX
De Overdispersion

BG4285 LDAC 366.05 ± 10.06 16.43 ± 2.03 325.68 ± 21.90 407.20 ± 27.92

`Luminescence' 366.05 ± 10.06 16.43 ± 2.03 314.27 ± 17.48 NA

Simulated LDAC 110.42 ± 7.02 63.30 ± 4.52 47.59 ± 0.71 237.22 ± 17.28

sample `Luminescence' 110.42 ± 7.02 63.30 ± 4.52 47.54 ± 1.11 226.52 ± 9.81

Figure 10. Comparison of dose rates (Dr) calculated by LDAC and
DRAC. BG4285 is the example data set in LDAC (v1.0). DRAC-
Q, DRAC-F and DRAC-PM are quartz, feldspar and poly-mineral
example data sets provided by DRAC (Durcan et al., 2015), respec-
tively. The raw data and used parameters are provided in Supple-
ment D.

software. The comparisons show that our De and Dr are con-
sistent with the results calculated by the R `Luminescence'

package and the DRAC within the error range, respectively
(Table 4; Fig. 10). However, the standard error of dose rate
calculated by LDAC is systematically greater than that of
DRAC (Fig. 10), which is caused by the different error prop-
agation strategies stated in Section 5.4.

6. Discussion and Future direction
LDAC is a user-friendly, statistically robust, and self-

contained luminescence age calculator which provides
equivalent dose, environment dose rate, and final age calcula-
tions. This platform is accessible in a Windows environment
equipped with Microsoft Excel 2010 or later. The framework
of this software openly defines the calculation processes and
input and output parameters. This Excel-based program, be-
yond a calculation tool, can be an effective manager of OSL
data. Users can store the parameters of SAR sequences, in-
dividual aliquot or grain De values, dose rate information,
pertinent diagnostic metrics on data quality and other ana-
lytical results as a separate LDAC file for each dated sedi-

ment. LDAC requires users to input or import their measured
data just one time, which can reduce potential mistakes in ex-
changing data among multiple calculation programs.

This is the first generation of LDAC as an open-source and
free access luminescence age calculation software. We plan
to further develop and refine this software with advances in
luminescence dating and community input. This calculation
platform will also evolve for dating and research applications
with improvements to the Microsoft Excel. The conversion
and attenuation factors for dose rate calculation will be up-
dated to reflect periodic refinements. Moreover, future ad-
ditions of LDAC may include new statistical models (e.g.,
Guérin et al. 2017) for assessing disequilibrium of U and Th
decay series and improved formulations for variations in cos-
mic and galactic radiation with fluctuations of Earth’s mag-
netic field. Improving the calculation efficiency of Monte
Carlo simulation is also a direction of future optimization.
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Reviewer comment:
This excellent paper is a welcome addition to the suite

of software available for luminescence dating, and draws to-
gether a range of calculations that would otherwise be scat-
tered across different programmes. The authors’ parame-
terisation of the soft component of the cosmic dose rate
(Eq. 24) is similar to that originally developed by Robert
Clark in 1997 for his unpublished software “Cosmic”. In
that software he parameterised the data from Prescott & Hut-
ton (1988) with the following function which was adopted
for DRAC by Durcan et al. (2015).

Dc = 3.21×10−2x4−1.35×10−1x3 +2.21×10−1x2

−2.07×10−1x+0.295
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Victoria Fitzgerald
Chronology of gypsum dunes at Knolls, Utah: refining

OSL techniques and timing of Holocene eolian processes
December 2019

Kansas State University, Manhattan, USA

Degree: M.Sc.
Supervisor: Dr. Joel Q. Spencer

This study examines eolian samples from post-Lake Bon-
neville gypsum dunes in Knolls, UT, primarily to determine
suitability of optically stimulated luminescence (OSL) dat-
ing protocols for gypsum geochronology. Sedimentologists
often rely on proxies to understand geologic timescales, OSL
may eliminate that need in environments with gypsum. Us-
ing OSL we aimed to identify the ages of punctuated climatic
events that are linked to deposition of the gypsum rich dunes
found in the study area. To accomplish this pursuit, sys-
tematic research of gypsum preparation protocols were re-
quired. Multiple experiments were undertaken to assess the
effectiveness of mineral isolation and etching. Knowledge
of gypsum behavior is of particular interest, as it is found
in both lacustrine and marine environments and is typically
less soluble than other evaporites found in both settings, such
as sodium chloride. Gypsum has also been observed at sev-
eral hundred meters water depth in the alkaline environment
of the Arctic Ocean. Additionally, gypsum sand grains are
accessible to researchers in geomorphic features like uncon-
solidated to semi-consolidated dunes, making them easier to
sample for OSL analyses than gypsum or quartz found in an
outcrop. Sampling strategy can be quickly determined for
dunes that are exposed on all sides.

The focus of this study seeks to resolve discrepancies ob-
served in the small body of literature on gypsum as an OSL
chronometer. Relatively homogenous eolian gypsum sand
grain samples with grain sizes ranging from > 63 µm to
< 250 µm from two adjacent paleodunes (KNP-A and KNP-
B) and one coppice dune (CD-5) were used to determine
best preparation practices and identify if punctuated climatic
events during the Holocene could be detected using gypsum.
The sample site was selected for a case study on OSL dating

techniques because previous work has constrained the max-
imum age of post-Lake Bonneville dune formation (∼ 12 ka
BP).

Preparation protocols, independently checked using vari-
ous methods, were selected with minimal mineralogical im-
pact and OSL sensitivity considerations in mind. Bulk com-
position and mineralogy of the sediment at various steps in
sample preparation have been analyzed using X-Ray Diffrac-
tion, bulk elemental extraction, particle size analysis, Scan-
ning Electron Microscopy and binocular microscopy. Etch-
ing experiments indicate that an air-dried, dry-sieved, and
gypsum-rich fraction (90 – 125 µm) can be effectively iso-
lated and etched in ∼ 36 wt% HCl for 40 minutes. Of the var-
ious OSL measurement protocols attempted, we confirmed a
modified single-aliquot regenerative-dose protocol produces
detectable luminescence signals and equivalent doses (De)
that are usable in age calculations. Age results are likely to
be underestimated by approximately 0.5 – 0.8 ka, based on
comparison to a single quartz OSL sample (KNP-A1) with
an age of 2.2 ka and its equivalent gypsum sample of 1.4 ka.
This is the oldest age sampled from the stratigraphically low-
est section of either KNP-A or KNP-B. Samples from KNP-
B identify this smaller dune was deposited after KNP-A be-
gan developing. Age results from the stratigraphically lowest
sample collected, KNP-B1, indicate deposition occurred at
0.88 ka. The active coppice dune (CD-5) gypsum OSL age
is 0.09 ka. This study recommends further investigation into
why the apparent discrepancy between gypsum and quartz
OSL chronology exists.

A PDF of this thesis can be downloaded from: http:

//hdl.handle.net/2097/40275

Amber G. E. Hood
New Insights into Old Problems: The application of a

multidisciplinary approach to the study of early
Egyptian ceramic chronology, with a focus on

luminescence dating
January 2017

University of Oxford, Oxford, UK

Degree: Ph.D.
Supervisors: Jean-Luc Schwenninger, E. Christiana Köhler,

Christopher Bronk Ramsey

This thesis takes a multidisciplinary approach to the study
of ancient Egyptian ceramics by applying scientific dating
techniques alongside more traditional methods. It is the first
study to apply OSL dating to an Egyptian ceramic assem-
blage, and it has done so by developing the minimum extrac-
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tion technique (MET), which has made it possible to use OSL
to sample, and thus analyse, ceramics housed in museums.

The MET is at present essential to the success of OSL
dating of Egyptian ceramics, as the exportation ban on antiq-
uities has prevented OSL analysis of field material.

For this thesis, using this new sampling technique, OSL
has been applied to several assemblages from the Predynas-
tic to the Early Dynastic period. Ceramics from Bêt Khal-
laf have been examined, with three phases being established:
late Naqada III, First Intermediate Period, and the mediae-
val Islamic period. Absolute dates have been determined
for each phase and, where comparison is possible, have been
found in good agreement with the historical chronology.

A set of vessels from Naqada, Ballas, and the Tomb of
Djer at Abydos have been examined using OSL in conjunc-
tion with radiocarbon dating. Again, three phases of activity
were discerned: late Naqada II, early Naqada III, and the
first scientifically determined dates for a burning event in the
Tomb of Djer (the New Kingdom).

The thesis also demonstrates how OSL can be used as a
relative dating technique by analysing a collection of Wavy-
Handled ceramics and wine jars from Turah and Hierakon-
polis, finding that the OSL results agree well with the estab-
lished relative chronology.

Finally, this thesis has also examined the applicability of
cladistic analysis to the study of Egyptian ceramics. Cladis-
tics is a technique borrowed from the biological sciences
which offers a complimentary way to examine the evolution
of ceramic types and forms, in particular the development of
beer and wine jars.

A PDF of this thesis can be downloaded
from: https://ora.ox.ac.uk/objects/uuid:

508818b7-930b-4e06-890c-5c2dbb12fe42

Yue Hu
Lithic industries and chronology of Middle Paleolithic

sites in Southwest China
July 2019

University of Wollongong, Wollongong, NSW 2522, Australia

Degree: Ph.D.
Supervisors: Bo Li, Ben Marwick, Richard Fullagar, Sam

Lin, Richard G. Roberts

The characteristics and development of Palaeolithic in
China and more broadly in East Asia have been hotly de-
bated. At the centre of the debate is whether there were lithic
technological changes in East Asia during the Middle and
Late Pleistocene. It has been argued that the lithic industries
in this region were dominated by simple core-flake produc-
tion system until the Late Pleistocene when Upper Palaeothic
forms appeared. The lack of advanced stone tool technology
in East Asia would imply that hominin populations in this re-
gion were possibly culturally and genetically isolated during
the early and middle Pleistocene. One of the main reasons

that caused such a debate is the scarce of well-defined ‘Mid-
dle Paleolithic’ sites in East Asia, because many of these
sites were excavated decades ago and, hence, lacked reli-
able chronology and detailed and systematic lithic study. To
contribute to our understanding of Paleolithic culture in East
Asia during the late Middle Pleistocene period, this study
presents detailed lithic analysis and chronological study on
two Paleolithic sites in Southwest China, Guanyindong and
Tianhuadong caves.

In order to establish reliable chronological frameworks
for the sites, the recently developed single-grain optically
stimulated luminescence (OSL) techniques were applied to
date quartz grains extracted from the artefact-bearing sedi-
ments from the sites. Since a part proportion of the quartz
grains have saturated OSL signal, the standardised growth
curve (SGC) method was applied to avoid underestimation
in age due to truncated equivalent dose distribution. It shows
that the SGC method can be successfully applied to date
sediments from this region. OSL ages of 170 – 80 and 90 –
50 thousands years ago were obtained for the Guanyindong
and Tianhuadong sites, respectively, which suggests that both
sites should be assigned to Middle Palaeolithic period.

Evidence of complex systems of lithic production from
the two studied sites are reported. Based on detailed anal-
ysis of over 2000 stone artefacts from the Guanyindong as-
semblage, a total of 45 stone artefacts were identified to be
made with Levallois concept, including 11 cores, 31 flakes
and 4 tools. Apart from Levallois, the lithic assemblages
from the sites provide evidence of diverse lithic production
systems, including Quina, Kombewa, and discoid systems,
which shows that the late Middle Pleistocene inhabitants
in this region had used a variety of tool-making strategies
to adapt to climatic and ecological conditions, raw mate-
rial availability and demographic contexts. These new find-
ings are similar and contemporary to those typically found in
west Eurasia, suggesting that during late Middle Pleistocene
hominins in this area had the comparable abilities as those
in Europe and Africa, and, thus, challenge the longstanding
view that there is a lack of distinct progress in lithic technol-
ogy during the Early and Middle Palaeolithic period in East
Asia.

Jack Arthur Johnson
Case Studies in Geoarchaeometry

December 2018
University of Washington, Seattle, USA

Degree: Ph.D.
Supervisor: James K. Feathers

This dissertation consists of four standalone papers.
Each paper addresses a distinct geoarchaeological challenge
through the application of specialized technical methods and
experimental data. New approaches to data gathering are
developed, and familiar approaches are combined with new
archaeological applications and software tools to yield new
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lines of evidence useful for the examination of significant
archaeological questions. The first paper uses portable X-
ray fluorescence (PXRF) to measure elemental concentra-
tions in sediments and ceramics, but identifies several seri-
ous issues with common instrumentation and practice, then
develops novel protocols and software tools to address these
issues. The second paper describes a successful test applica-
tion of PXRF to the relative dating of rock varnish accumu-
lations atop petroglyphs at Hole-in-the-Ground in southeast-
ern Oregon. The third paper details the use of luminescence
dating and Bayesian depositional modeling to create a ro-
bust multi-proxy site formation history at Bear Creek in Red-
mond, Washington. The fourth paper uses luminescence dat-
ing of sediments and Bayesian modeling to document over
2000 years of changes in El Niño- and earthquake-driven de-
positional activity in the Santa and Chao Valleys of Perú, and
discusses the implications of these patterns for archaeologi-
cal research in the region.

A PDF of this thesis can be downloaded from: http:

//hdl.handle.net/1773/43285

Anna A. Romanyukha
Retrospective and Real-Time Semiconductor Dosimetry:

Applications to Geological Dating and Brachytherapy
Quality Assurance

June 2019
University of Wollongong, Wollongong, Australia

Degree: Ph.D.
Supervisors: Richard G. Roberts, Anatoly Rosenfeld

In this thesis solid state semiconductor dosimetry is ap-
plied to the improvement of luminescence dating techniques
(part 1) and quality assurance in high dose rate (HDR)
brachytherapy (BT) cancer treatments (part 2).

The aim of part 1 is the development, testing, and appli-
cation of a novel method to measure spatially resolved dose
rates in sediment samples using the Timepix pixelated detec-
tor. The Timepix contains an array of 256×256 pixels, each
55×55 µm in size and with its own preamplifier, discrimina-
tor and digital counter, and is able to provide the position and
pixel-by-pixel count rate of the incident radiation. The devel-
opment of a method to measure sediment samples and derive
spatially resolved dose rates is described, followed by its ap-
plication to sediment samples from Liang Bua and Denisova
Cave archeological sites.

Part 2 focuses on the application of real time in vivo
dosimetry for HDR BT treatment verification. MOSkin
dosimeters were selected due to their small size and capabil-
ity of measuring steep dose gradients, such as those charac-
teristic of the HDR source. Three MOSkins were placed on a
rectal probe to verify doses to the rectal wall in gynecological
BT treatments. A feasibility study and the in vivo application
of the proposed method to patient treatments at the Istituto
Nazionale dei Tumori (INT) are described. Furthermore, a
system for real time tracking of the HDR source is proposed

by embedding epitaxial diodes on the surface of a multichan-
nel vaginal cylinder (MVC). The ability of the developed sys-
tem to verify positions and dwell times of the HDR source
was tested using simple dwell positions and dwell times, fol-
lowed by the retrospective delivery of 10 clinical plans previ-
ously delivered to patients undergoing adjuvant vaginal cuff
BT after hysterectomy at INT.

A PDF of this thesis can be downloaded from: https:

//ro.uow.edu.au/theses1/561/
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Conference Announcements: JpGU-AGU 2020 
 

 
 

2020 JpGU-AGU Joint Meeting: Trapped-charge 
Dating Session 

 
 

 

 

Session : Innovative Applications of Trapped-Charge Dating to Quaternary 
Geochronology 

Abstract Deadline : 18 February, 2020 

Session Date: 27 May 2020 

Convener: Toru Tamura, Shin Toyoda, Yuji Ishii, Sumiko Tsukamoto 

Conference webpage : http://www.jpgu.org/meeting_j2020/ 

Session abstract:  
Trapped-Charge Dating (TCD) is a general term for absolute dating methods that use 
trapped electrons in crystal lattice, such as optically-stimulated luminescence (OSL) and 
electron spin resonance (ESR) dating. TCD presented one of the most successful 
progresses in geoscience and archaeology over the last 20 years, and still has a great 
potential in innovative applications. Technical progresses in optical dating of quartz and 
feldspar grains enables determination of depositional ages in a broad range from 10 to 
500,000 years. Rock surface dating provides a way to determine surface exposure ages as 
well as burial ages of gravels. Thermochronometry with TCD is a state of the art method to 
determine the degradation and uplift rates on high temporal resolution. Further efforts have 
been made on TCD for extracting chronological information of past seismic activities. 
Innovative IRPL (infrared photoluminescence) method has also recently been invented. This 
session covers a wide range of TCD applications to problems in Quaternary geochronology 
as well as its technical advances. Comprehensive reviews on successful TCD applications 
and contributions of unestablished, challenging researches are also welcome. 

For further details please contact Toru Tamura (toru.tamura@aist.go.jp) 

 

http://www.jpgu.org/meeting_j2020/
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Conference Announcements: ISA 2020 
 

 
 

43rd International Symposium on Archaeometry 
(ISA 2020) 

 
 
 

 
 
 
 
 
 
The 43rd International Symposium on Archaeometry (ISA 2020) will be held in Lisbon, 
Portugal, from May 18 to May 22, 2020, organized by Instituto Superior Técnico. 
Universidade de Lisboa. 
 
The aim of the Symposium is to promote the development and use of scientific techniques, 
for the extraction of archaeological and historical information from the cultural heritage and 
the paleoenvironment. 
 
Date: 18th to 22nd May 2020 
Location: IST, Congress Centre, Lisbon (Portugal) 
 
 
For more information visit the webpage 
https://www.isa2020-lisboa.pt/index.php 
 
or contact 
isa2020@isa2020-lisboa.pt 
 
 

https://www.isa2020-lisboa.pt/index.php
mailto:%20isa2020@isa2020-lisboa.pt
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Conference Announcements: NWLDW 2021 
 

 
 

2021 New World Luminescence Dating Workshop 
 
 
 

 
 
 
 

For more information please contact 
 

Shannon Mahan (smahan@usgs.gov) 
or 

Harrison Gray (hgray@usgs.gov) 

mailto:smahan@usgs.gov
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Book Announcements: Handbook of Luminescence Dating 
 
  
Note: Ancient TL does not endorse this product nor encourage readers to buy the book. However, we realize 

it will be a useful and interesting product to many in the luminescence and ESR community. 
 

Information from the publisher: 
 

 
Book Announcements: Whittles Publishing  

www.whittlespublishing.com  
 

 
 

Handbook of Luminescence Dating  
  
   Edited by Mark D. Bateman 
 
 

• An accessible guide for archaeologists and 
Quaternary scientists and geologists  

• In depth explanations of challenges and issues arising 
from applying luminescence dating in specific 
environmental and archaeological contexts  

• Fully illustrated case studies show the range of 
approaches adopted and the reliability and precision 
of resultant ages 

• Provides guidance on interpreting luminescence ages 
and using them in chronological frameworks  

 
 

 
 
Contents: Principles and history of luminescence dating; From sampling to reporting; Incorporating luminescence 
ages into chronometric frameworks; Applications in aeolian environments; Applications in loessic environments; 
Applications in glacial and periglacial environments; Applications in fluvial and hillslope environments; Applications 
in coastal and marine environments; Applications of luminescence dating to active tectonic contexts; Applications 
in archaeological contexts; Rock surface burial and exposure dating; Future developments in luminescence dating 
 

ISBN 978-184995-395-5    240 x 170mm   416pp   over 130 photographs, diagrams, charts, etc.   
colour throughout   hardback   £90    

 
Full information is available at 
http://www.whittlespublishing.com/Handbook_of_Luminescence_Dating 
 

http://www.whittlespublishing.com/Handbook_of_Luminescence_Dating
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Announcements: Inter-Laboratory Comparison 
 
  

Inter-laboratory comparison to measure the elemental concentration or 
specific activity of uranium, radium, thorium and potassium in sediment 

 
Various OSL labs in the New World luminescence dating community have recently decided to 
perform a small inter-laboratory comparison, specifically to measure the element concentration 
of uranium, radium, thorium and potassium in sediment. The measurement can be any desired 
method: ICP-MS, XRF, gamma spectrometry, alpha or beta counting, or atomic emissions 
(flame photometer). We just need as many labs to participate as possible so we can see the wide 
range of precision and accuracy for a natural sample. We would like to keep the project open to 
other labs in North and South America, as well as around the World for participation. Simply 
raise your hand to let us know your interest! 

As we are all aware, the last wide-scale inter-lab comparison (Murray et al., 2015) ended 
on a perplexing note: the measurement of the equivalent dose had good reproducibility between 
labs, with an average relative standard error (RSE) between 2 and 3 %. Unexpectedly, however, 
the (simple) measurement of uranium, radium, thorium and potassium was far more dispersed, 
ranging from 3 to 13 % RSE. Perhaps this was a sign that we have neglected the bottom half of 
the age equation for too long! The only way to revolve this is to repeat the exercise, with the 
hope of identifying something that we have neglected.  

We have recently retrieved two buckets of sand from a Colorado River terrace at a quarry 
in Grand Junction (Colorado) USA. Our purpose in collecting this massive, naturally 
homogenized, silty sand was two-fold: A larger aim will be to return to that quarry next year for 
an inter-laboratory comparison with portable gamma spectrometers at a natural site that we can 
all access and a secondary aim is to collect some of this sand and standardize it at the USGS 
Reference Sediment Laboratory for distribution to all that would like to measure the K, U, and 
Th activities or elements. The sample would be split, processed, and bottled at the USGS 
Reference Laboratory with QA/QC procedures. We anticipate producing about 200 uniquely 
numbered bottles of approximately 200 g of sample which would go out to labs that expressed an 
interest in helping the community study. If there is sufficient interest, then the sample will be 
measured by a certified laboratory (perhaps several?). This would provide us with an 
independent base of reference to which we can objectively compare our individual performance 
against. We plan to present the results, anonymized, in the LED2020 meeting. 

For the labs in North America, Grand Junction is of great interest because for the past 40 
years the US Department of Energy has maintained various horizontal pads and vertical wells for 
the purpose of calibration of portable gamma detectors. Earlier this autumn, we united five 
laboratories at this site, during the same weekend. Due to unforeseen reasons, we could not 
access the quarry during that weekend, sadly, but in the future we plan to hold community 
calibrations there as well. After a hard day of calibration, we can retire to several nearby 
vineyards to discuss the science. 
 
Coordinators: Sebastien Huot shuot@illinois.edu and Shannon Mahan smahan@usgs.gov  
 
Murray, A., Buylaert, J.-P., Thiel, C., 2015. A luminescence dating intercomparison based on a Danish beach-ridge 
sand. Radiation Measurements 81, 32-38. http://doi.org/10.1016/j.radmeas.2015.02.012 

mailto:shuot@illinois.edu
mailto:smahan@usgs.gov
http://doi.org/10.1016/j.radmeas.2015.02.012
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Announcements: Various Ancient TL matters 
 
  

 
Ancient TL adopts the Creative Commons Attribution 4.0 License 
 

Starting with the current issue (Vol. 37, No. 2) Ancient TL articles are published under the 
Creative Commons Attribution 4.0 License. By submitting a manuscript authors automatically 
agree that their article is distributed under the Creative Commons Attribution 4.0 License. More 
information can be found under 
 

https://creativecommons.org/licenses/by/4.0/ 
or 

ancienttl.org 
 
 
 
 

New Databases for measurement procedures and calibration sites 
 

In summer 2019 Ancient TL made available an overview of freely available tools for trapped 
charge (dating) data analysis (see http://ancienttl.org/software.htm). Our goal is to add to this 
service by adding two new databases 

1. A collection of calibration sites for dosimetry measurements: Portable gamma 
spectrometers and other dosimetry methods need to be calibrated on a regular basis, but 
information about suitable sites is usually spread by word of mouth. Goal is to list 
calibration sites by continent and to make available pertinent information to any 
interested user. This can include anything from government provided calibration pads, to 
field sites, to brick stacks in a laboratory. 

2. A list of measurement procedures: The number of measurement procedures for quartz, 
feldspar and other minerals is growing by the months and it is increasingly difficult to 
keep track. Review articles are quickly outdated. Our goal is to provide an overview of 
different measurement procedures starting from MAAD, SARA and SAR to IRPL 

The software was compiled and is updated by Sebastian Kreutzer. Ancient TL is looking for 
volunteers to help in a similar way with the two lists above.  
Please contact Regina DeWitt (dewittr@ecu.edu) for more information. 

https://creativecommons.org/licenses/by/4.0/
http://ancienttl.org/software.htm
mailto:dewittr@ecu.edu
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