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SAR paleodoses using natural sensitivity correction (NCF)

Rahul Kumar Kaushal1∗ , Naveen Chauhan1 , Ashok K. Singhvi1

1 AMOPH Division, Physical Research Laboratory, Navarangpura, Ahmedabad 380009, India
∗Corresponding Author: rahulkiitgn@gmail.com

Received: November 18, 2022; in final form: December 8, 2022

Abstract
This study presents a MATLAB based program
to implement the natural sensitivity correction
(NCF) for the assessment of single aliquot
regeneration based paleodoses (Singhvi et al.,
2011; Chauhan & Singhvi, 2019). Several
software packages /spreadsheets are in use to
calculate the SAR paleodoses (Des) but do not
offer the facility for such a correction. The
user-friendly program presented here, com-
putes NCF-SAR paleodoses (Des) and includes
the errors in the measured NCF values. Monte-
Carlo simulation was used to propagate the
uncertainties in the paleodoses from the NCF
and uncertainties in curve fitting parameters.

Keywords: NCF-SAR, paleodose, MATLAB,
Monte-Carlo simulation

1. Introduction
In luminescence dating, the single aliquot regeneration

protocol (SAR) is routinely used to estimate the paleodoses
(Murray & Wintle, 2000). An addition to this protocol,
the natural sensitivity correction (NCF), was suggested by
Singhvi et al. (2011) to account for sensitivity changes that
occur during the preheat and readout of natural OSL. When
ignored, this sensitivity change leads to systematic offsets in
paleodoses (Figure 1) and results in higher dispersion in De
values, (Singhvi et al., 2011; Chauhan et al., 2015; Chauhan
& Singhvi, 2019). Use of NCF also enables handling of sam-
ples when the natural OSL intensity is higher than the lumi-
nescence intensity at the saturation dose of the regenerated
curve for SAR-corrected measurements.

NCF is measured as the ratio of the 110 °C TL peaks be-
fore and after the measurement of natural OSL. Tables 1 and

2 provide the measurement schedule for the conventional and
the NCF-SAR protocols. Though necessary, available soft-
wares do not include any provision to include the NCF. We
present here a user-friendly MATLAB based program for in-
clusion of NCF in the calculation process. The uncertainties
in the paleodoses of NCF are propagated using the Monte
Carlo method (MCM) (Figure 2).

This program requires input data on an Excel spreadsheet
in a specified format. It then carries out multiple MATLAB
functions to calculate the NCF-SAR paleo-doses. It enables
analysis of multiple aliquots or samples in a single opera-
tion by uploading appropriate files, one for each sample. Ap-
pendix A and the supplementary file provide relevant details
for the use of the program for computation. The output is
provided as an Excel spreadsheet.

Table 1: Generalized single-aliquot regeneration (SAR) pro-
tocol by Murray & Wintle (2000)

Steps Treatment Remarks
1 Give dose Di -

2 Pre-heat (160 – 300 °C,10s) -

3 OSL (40s, at 125 °C) Li

4 Give test Dose -

5 Preheat (160 – 300 °C) -

6 OSL (40s, at 125 °C) Ti

7 Return to step 1

For the natural sample, i=0, and D0 = 0 Gy; Li and Ti are
derived from the stimulation curve, typically the first 1 – 10 s
of initial OSL signal, minus a background estimated from the

last part of the stimulation curve.
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Figure 1: Response curve of sensitivity corrected OSL (Lx/Tx ratio) vs. dose (i.e. growth curve) of quartz samples from desert
dunes to show sensitivity change during natural measurement. NCF corrects for these sensitivity changes even in the saturation
range. (Data in Figure b from Chauhan et al. 2015).

Steps Treatment Remarks
1 Natural Sample Pure quartz on SS discs
2 Dose for NCF Small dose added to natural sample
3 *TL to 200 °C at 2 °C/s for 10 s TL1

4 Preheat (160 – 300 °C) 10 s SAR preheat
5 OSL** at 125 °C for 40 s OSL (Ln)
6 Cut heat (200 °C) To remove charge from possible phototransfer, if any and photo-transfer
7 Test Dose Small dose added to sample
8 TL to 220 °C at 2 °C/s for 10 s TL2

9 OSL at 125 °C for 40 s OSL (Tn)
10 Regeneration dose (R1, R2, R3, 0, R1)

*TL-integration peak ± 15 °C or peak ± FWHM
** If sample contains feldspar as inclusion, use of IR bleaching at 50 °C for 100 s is recommended before every OSL
measurements to subdue the contribution of feldspar.

Table 2: The NCF-SAR method for calculating the natural correction factor (TL2/TL1) to correct sensitivity change occurring
during natural OSL measurement. The remarks of each step are given for clarity.

2. Calculation Procedure
The following sequence is used to calculate NCF cor-

rected doses (Figure 2).

1. The NCF is computed as

NCF =
T L1(IntegratedCounts)
T L2(IntegratedCounts)

(1)

TL1 is integrated TL counts for 110 °C before preheat
and natural OSL measurement and TL2 is integrated
photon counts after readout of natural OSL (Table 1,
Singhvi et al. 2011). A typical integration range could
either be peak ± 15 °C or peak ± FWHM, with mea-
surements at a heating rate of 2 °C/s.

2. These are used to correct individual normalized natural
OSL

(
Ln

Tn

)
corrected

=
1

NCF
× Ln

Tn
(2)

The error in this is propagated as for a ratio. The NCF
corrected (Ln/Tn) ratio and its error are used to gener-
ate a Gaussian probability density function (pdf) from
which values can be picked randomly.

3. Parameters (a, b, c) and their associated errors from the
fitting of the typically exponential growth curve

Y = a
(

1− e−
x+c

b

)
(3)

are then picked up from the instrument software and a
Gaussian probability density function for each is gen-
erated such that the standard deviation (1-sigma error)
represents the width of the distribution. From these, ran-
dom data points are generated and for each set of such
data points, a corresponding De is computed. Typically,

2
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for each parameter, 10,000 stochastic values are gener-
ated using Monte-Carlo simulations. The random num-
bers are created through the ‘rand’ function in MAT-
LAB which uses the Ziggurat random normal generator
based on Marsaglia (1968).

4. The mean and standard deviation of the resulting distri-
bution give the De value and its error for each aliquot
respectively whether they are single or multiple grains.

Figure 2: Steps for the calculation of the NCF corrected dose

3
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3. Results and Discussion
Figure 3 shows typical results for the statistical distribu-

tion of NCF corrected dose values from the above computa-
tions. The histogram shows De values for each of 10,000
computations. The number 10,000 was determined based
on Figure 4 when De and its error stabilized. The mean
or central value of the paleodose De and its standard devi-
ation (1-sigma uncertainty) was obtained from analysis of
the resulting distribution of De values of single aliquots (Fig-
ure 3). This same procedure was carried out for the remain-
ing aliquots to obtain their mean De value along with its er-
ror. Finally, data for all of the aliquots with their NCF cor-
rected De and their errors were collated to create a histogram
(Figure 5). A comparison of NCF-corrected De with NCF-
uncorrected De is given in Table 3 and Figure 5. The NCF
ratio for sample TNLW-3 ranges from 0.81 to 1.2 indicating
that an aliquot-specific NCF value is needed.

Figure 3: Histogram of Sample TNLW-3 (for disc-5) show-
ing result of the Monte-Carlo simulation to obtain De distri-
bution and its standard deviation.

Figure 4: Error in NCF paleodoses stabilises with increasing
number of MCM simulations.

Figure 5: Comparison of dose distributions obtained with
and without NCF-SAR correction. Reduced scatter in the
MCM-derived standard error of De is also noticeable as the
NCF correction is applied.

4. Conclusion and Summary
A user-friendly program for applying the NCF-SAR pro-

tocol is proposed that uses Monte-Carlo simulations and er-
rors integration in NCF in the final corrected paleodose. On
applying an MCM approach for error propagation minor
changes in NCF corrected paleo-doses and in their error are
seen. The NCF-SAR procedure results in lower dispersion in
paleodoses and significantly lower paleodoses.

Acknowledgements
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Sample Depth (m)
De (Gy)

%-Change in DeWithout NCF With NCF
TNLW-1 0.5 3.6 ± 0.1 3.0 ± 0.1 16
TNLW-2 1.5 10.1 ± 0.3 8.9 ± 0.3 11
TNLW-3 2.36 19.6 ± 0.2 16.5 ± 0.3 17
TNLW-5 4.26 20.9 ± 0.2 17.2 ± 0.3 17
TNLW-6 5.11 21.3 ± 0.2 19.9 ± 0.2 7

Table 3: Variations in paleodoses (De) on applying the NCF correction factor and their percent-change in samples from the
Thar Desert.

Appendix: Procedure for input data format and
executing NCF-SAR MATLAB program

1. To run these functions, no programming skills or ad-
vanced MATLAB capability are needed and the follow-
ing steps will help computations. Open Relevant Ana-
lyst file → Go to top menu bar in Analyst → Records
→ Unselect All → Every Record

2. Records tab → Select All → Records of type → Select
records of OSL → Click on SAR button → A Single
Aliquot Analysis: window will open.

3. Choose Integration Limits for Signal and Background
→ Go to Curve Fitting → Select exponential fit → Set
acceptance Criteria: - Recycling ratio limit (%) =10;
Max. test dose error (%) = 10; Max. paleodose error
(%) = 10; Max. Recuperation (%) = 5; Tick () on Incor-
porate error on curve fitting.

4. Now Go to Function tab → Analyse All Grains by ac-
counting all acceptance Criteria

5. Go to Summary Data tab → Select all aliquots that have
passed criteria and gave De values (use Shift + Right
arrow on keyboard) → Right click on selected area →
Copy data to clipboard with headers → Paste it to any
*.txt file or Excel file

6. From this data, select only following columns which
will be used for NCF analysis and copy them in an Ex-
cel sheet- (1) Filename (2) Disc (3) ED (4) ED_err (5)
Ln/Tn (6) Ln/Tn_err (7) Param1 (8) Error1 (9) Param2
(10) Error2 (11) Param3 (12) Error3

7. Close this Single Aliquot Analysis window

8. To extract data for the TL1 and TL2 counts- follow step-
1 again and make sure Selected column show ‘False’.

9. From Display information menu → Click on Integral1
to integrate counts around the peak ± 15 °C region. (For
example: lower and upper integration limit was 85 °C
and 105 °C respectively for the TNLW-3 sample)

10. Repeat step-9 to obtain TL2 Integral counts.

11. To export TL1 and TL2 integrated counts; Carefully
choose Lumin. Type and Run Number as per Table-2
NCF-SAR protocol steps. (For example: Lumin. Type
= TL And Run Number = 2 → will select TL1 integrated
counts; Lumin. Type = TL And Run Number = 7 → will
select TL2 integrated counts)

12. Once all necessary data has been extracted, we can ar-
range the step-6 columns and TL integrated counts in
the sequence with headers shown in Table A1

Note: The fitting parameters (a, b, and c) for the sat-
urating exponential are saved as Param1, Param2 and
Param3 along with their errors.

It is to note that the machine dose rate (Gy/min) will be
used to calculate the final paleodose (De) in Gy by using
the actual dose rate calculated at the time of experiment.
The irradiation raw data obtained from analyst is in sec-
onds. It is kept in the mentioned units so as to minimize
data processing by the user. Date formatting should be
as D-M-YYYY.

13. To run NCF-SAR MATLAB program, MATLAB func-
tion files are best kept in the same folder or add them to
MATLB path. Then user needs to open a MATLAB
command window and recall the function by typing
command load_NCFSAR_data and run the program by
clicking on Run button or pressing F5 in MATLAB up-
per panel. This will open a new menu window and nav-
igate to the current folder where all the sample excel
files are placed. User can select any file and follow
instructions visible on the MTALB command window
(Fig. A1). If any user has multiple files to process, then
name them as sample name_. This program takes input
file as both .csv or excel file format with a single spread
sheet. (The program to run with or without MCM cal-
culation is based on user choice). On execution, the
NCF-SAR program provides the sensitivity corrected
paleo dose estimates in a separate excel file (sample
name_result_NCF_SAR) along with a dose distribu-
tion plot. These are automatically saved in the ‘result’
folder. The NCF corrected dose data can be analysed
through various platform (e.g., R or DRAC calculator)
to calculate final age.

The NCF-SAR MATLAB program, together with steps

5
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1 2 3 4 5 6 7 8 9
File name date Disc position ED ED_ err TL1 TL2 Ln/Tn Ln/Tn_err

10 11 12 13 14 15 16 17 18 19

a a_err b b_err c c_err NCF Test dose
Machine
Dose Rate
(Gy/min)

Machine
calibration
date (D-M-
YYYY)

Experiment
date (D-M-
YYYY)

Table A1: Arrangement of data (see step 12 of the Appendix)

and the example data presented in this publication as in-
put for the code, can be downloaded from the Ancient TL
webpage. It is also available from Github, an open ac-
cess open-source platform website (https://github.com/
Rahulkaushal009/NCFSAR-tool).
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Abstract
This paper communicates an update to the
minimum extraction technique (MET) sam-
pling protocol (a means by which to extract
and subsequently measure a minute sample
from museum objects for luminescence dating),
designated the extended MET protocol. The
new protocol facilitates a sample yield of
approximately double that of the original MET
protocol without altering the outward appear-
ance of the sampling mark on archaeological
materials. This development is useful when
working with museum materials where the
visual integrity of artefacts often takes prece-
dence over access to sampling for luminescence
analysis.

Keywords: minimum extraction technique,
ceramics, museum artefacts, optically stimu-
lated luminescence

1. Introduction

The minimum extraction technique (MET) sampling pro-
tocol was first presented by Hood & Schwenninger (2015) as
a technique which enabled sampling for absolute optically
stimulated luminescence (OSL) dating while at the same
time minimising the quantity of sample required for extrac-
tion from ceramic (and similar artefacts such as mud seals)
housed in museum collections. While it can of course be ar-
gued that OSL dating of non-museum ceramics (i.e. from
recent excavations) can yield more robust and routine data,
working with museum materials is often a necessity, e.g.
when access to OSL dating is not possible in certain regions
or local laws prevent analysis of recently excavated material.

Figure 1: A (top): 1.5 mm diamond disc burr drill bit; B
(middle): 2 mm diamond ball burr drill bit; C (bottom): 1.5
mm diamond core drill bit; all three drill bits are used in the
extended MET sampling protocol.

2. The extended MET drilling method

Initially, MET sampling saw the removal of a sample from
an artefact measuring c.2 mm x 4mm in volume using a hand
drill. The first 2 mm x 2 mm of removed material was recov-
ered using a 2 mm diamond ball burr drill bit (Figure 1B) and
was used for internal dose rate (Ḋint ) measurement. The sub-
sequent (i.e. below) 2 mm x 2 mm sample was then removed
using a 1.5 mm diamond core drill bit (Figure 1C) and it was
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Figure 2: A schematic of original (left) and new (right) MET
sampling; the ‘+’ illustrates the laterally removed additional
sample that improves MET “sample” yield.

this sample that was previously used for equivalent dose (De)
measurement.

In the extended MET protocol, the removal of the Ḋint
sample remains unchanged. The removal of the De sample
also remains the same at first, however it is extended by an
additional step. This new, final step uses a 1.5 mm diamond
disc burr drill bit (Figure 1A) to carve out additional mate-
rial laterally around the initial De sample; this lateral drilling
is achieved by moving the flat drilling head both circularly
and vertically between 2 mm and 4 mm in depth below the
surface of the vessel. Because only the smooth shaft of the
drill bit is at the surface of the vessel, no additional erosion
of the top 2 mm occurs. The differences between the two
methods are presented schematically in Figure 2. Figure 2
also illustrates that the additional material is suitable for De
measurement as it comes from 2 mm below the surface of the
vessel and thus avoids potential sample contamination from
either light or external beta particles (cf. Feathers 2009).

3. Results

This updated, extended MET sampling method yields a
significantly increased sample size, resulting in more mate-
rial being available for De measurement without affecting the
visible mark of the surface of the artefact where the sample
is taken (Figure 3). Table 1 illustrates how for a test sherd,
the increase in yield from MET sampling to extended MET
sampling across 10 samples was just over 100%.

4. Discussion

As the density, and thus mass, of a ceramic is highly vari-
able from vessel to vessel (or sherd to sherd), it is not possi-
ble to quantify the yield increase according to mass in abso-
lute terms for all potential samples. As such, extended MET
protocol samples carried out on other artefacts may produce
different masses to those seen in Table 1, which are specific
to the sherd used to demonstrate the inceased sample yield

Figure 3: A ceramic sherd (sub-sambled from MM 34209;
details available here) from the Medelhavsmuseet (Museum
of Mediterranean and Near Eastern Antiquities), Stockholm,
displaying 10 individual sample holes on its surface; holes
1 – 5 result from the extended MET protocol, and holes 6 –
10 are those made by the original MET protocol. All visible
surface holes remain at 2 mm in diameter.

resulting from the extended MET protocol presented here.
Volumetrically the increase is also difficult to quantify in

absolute terms as we are not able to see beneath the surface
of the sherd, but it is expected that, as with the increase in
mass, the increase in volume is approximately double, as il-
lustrated in Figure 2. It should also be noted that both the
MET and extended MET sampling protocols are carried out
by hand, often in make-shift laboratory conditions in mu-
seums where sampling takes place. As such, the visual pre-
sented in Figure 2 is a guide only and natural variation owing
to the nature of hand drilling may see the cavity made by ex-
tended MET drilling go slightly wider and/or deeper than in
Figure 2. However, it will not change the visual appearance
of the sampling location on the surface of the vessel.

While each individual ceramic sherd is unique (and thus

9
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MET Extended MET
8 mg 16 mg
9 mg 17 mg
10 mg 19 mg
8 mg 19 mg
7 mg 19 mg
7 mg 17 mg
8 mg 20 mg
6 mg 13 mg
5 mg 12 mg
7 mg 19 mg

Mean 7.5 mg 17.1 mg
Std dev 1.43 mg 2.73 mg

Table 1: Difference in sample mass yield between the MET
and the Extended MET sampling protocols. NB variations
in sample weight are likely resulting from the heterogene-
ity of the ceramic fabric, coupled with voids within the ce-
ramic matrix, caused, e.g., by organic inclusions that have
been burnt away. A portable digital scale, reading to three
decimal places was used to weigh each sample.

each sampling action is unique) it has been my experience
that the new extended MET protocol has an identical visible
surface footprint to the original MET protocol, because the
surface above the expanded sample remains stable. I there-
fore expect that this new technique is suitable for both intact
and fragmentary objects. To date, this extended MET proto-
col (and indeed the MET protocol before it) has not caused
structural issues for sampled objects and can be, in general,
considered a suitable sampling protocol for museum ceram-
ics. However, caution should always be exercised by the lu-
minescence practitioner when dealing with new, unfamiliar
material as the uniqueness of each individual piece could ren-
der destructive sampling difficult for certain artefacts, partic-
ularly if their matrix is of a particularly friable nature.

An additional benefit of the extended MET protocol is that
is also permits sampling with increased yield of ceramics
with thinner profiles. In general, if working with complete
vessels, the ideal sample location is the base of the vessel (as
it is usually both the thickest part of the vessel, and the most
sturdy and the most inconspicious place to sample). How-
ever, to ensure that the required 2 mm of surface material re-
mains in place to ensure no contamination from light or beta
particles, an artefact thickness of at least 6 mm was required
for the original MET protocol. This depth was necessary to
allow 2 mm to be remaining between the sample location
and the interior or back surface even after the 4mm sam-
ple was removed from the exterior surface (2 mm removed
for Ḋint determination, plus the 2 mm sample for De mea-
surement). As such, a 6 mm vessel profile was required for
successful MET samping. A profile width of 5 mm could
be worked with if necessary, however with the original MET
sampling, this meant a significantly reduced De sample could
be taken. However with the extended MET protocol, even

when working with a thinner ceramic profile of 5 mm, it is
in theory possible to achieve a De sample yield which is ap-
proximately equal to the sample volume achievable with the
standard MET protocol, as it is possible to remove additional
sample laterally within the central 1 mm of suitable sample
at the middle of the vessel wall.

5. Conclusion
This paper has presented an update to MET sampling,

termed the extended MET, which sees an increase of ∼100%
yield for the De sample compared to the sample yield that the
original MET sampling protocol delivered. This is a signifi-
cant improvement in the sample sizes that can be taken from
museum objects whilst still ensuring that a minimum amount
of damage is caused and that the aesthetic integrity of the
artefact is upheld. The extended MET protocol is thus rec-
ommended for use by those luminescence practitioners who
work with museum objects.
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Southern Utah: Geomorphic Record of Past Aridity in
the Central Colorado Plateau
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Utah State University, Logan, United States

Degree: Ph.D.
Supervisor: Dr. Tammy Rittenour

The Southwestern United States has a semi-arid climate
and is currently in a hydrologic drought that exceeds in mag-
nitude and duration any period of drought in at least five cen-
turies. Evidence of past migrations by Indigenous commu-
nities and the appearance/rise of other cultural adaptations in
the archaeological record during previous episodes of arid-
ity provide warning of similar disruption in modern times.
This is especially of concern given that climate models pre-
dict conditions of aridity in this region will be exacerbated
in the future due to anthropogenic climate change. Better
understanding of the natural variability of hydroclimate will
inform both adaptive strategies for future climate change and
improved climate forecasts. While instrumental records only
span the last < 100 years, paleoclimate archives (i.e., tree-
rings, sediment deposits) can provide longer duration records
that provide a baseline for the frequency and magnitude of
past aridity.

This dissertation investigates two dune fields on the cen-
tral Colorado Plateau in southern Utah. A chronostrati-
graphic record of eolian activity is developed to determine
periods of dune-field activation as an indicator of hydrocli-
mate conditions during the Holocene. Methods and datasets
used in this research include geomorphic mapping, descrip-
tions of stratigraphy and sedimentology, optically stimulated
luminescence and radiocarbon dating, geochemical analysis
of sediments and analysis of regional wind data.

The Kanab dune field in southwestern Utah is a largely
stable dune field with parabolic dunes of 2 – 15 m in height.
The dune field is oriented roughly west to east. Chronostrati-
graphic records were used to identify five periods of dune-
field wide eolian activity: K0 (~ 9.2 – 7.8 ka), K1 (~ 6.8 – 5.6

ka), K2 (~ 4.4 – 3.3 ka), K3 (~ 2.2 – 1.2 ka) and K4 (~ 0.7 –
0.4 ka). Activity events occur at millennial intervals, and
coincide with Bond events and other global climate records,
suggesting a climate driver. The San Rafael dune field in east
central Utah contains thin (2 – 6 m tall), east-northeast trend-
ing dune forms, partially stabilized with soil biocrusts and
xeriphytic shrubs, with sections of currently active parabolic
dunes and smaller barchan dunes and dune fields. Seven
episodes of eolian activity were determined from chronos-
tratigraphy in the dune field: SR0 (~ 17 – 16.2 ka), SR1
(~ 12.4 – 11.2 ka), SR2 (~ 9.7 – 7.4 ka), SR3 (~ 4.7 ka), SR4
(~ 3.4 – 2.5 ka), SR5 (~ 2.0 – 1.6 ka) and SR6 ( 1.1 – 0.4 ka).
Thin deposits and discontinuities in the record suggest an
erosion-dominant landscape. Results from both dune field
indicate three periods of coeval dune activation in the two
dune fields at ~ 9.5 – 7.5 ka, ~ 2 – 1.5 ka, and ~ 1 – 0.5 ka.
These are interpreted to record periods of regional aridity.
Records of mobile dune activity from other sites across the
Colorado Plateau suggest at least three and as many as five
periods of regional dune activity interpreted to be related to
regional aridity.

Analysis of weather station data indicate that modern
wind regimes are consistent with dune field orientation, sug-
gesting they are a useful analog for Holocene winds. Anal-
ysis of dune sediment geochemistry using K/Rb-K/Ba sug-
gests that the sediment source material did not change be-
tween periods of dune activation. This result supports in-
terpretation of a climate driver for dune field (re) activation
events and not changes in sediment supply.

A PDF of this thesis can be downloaded from: https:

//doi.org/10.26076/606f-c35f

Michael Hein
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November 2021

Max Planck Institute for Evolutionary Anthropology (MPI EVA),
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Degree: Ph.D.
Supervisors: Prof. Jean-Jacques Hublin (MPI EVA); Dr.

Tobias Lauer (MPI EVA); Dr. habil. Hans von Suchodoletz
(Leipzig University)

The research presented in this thesis aims to establish
robust chronostratigraphic frameworks for Late Pleistocene
Neanderthal open-air sites on the European Plain, because
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well-dated occupations are largely missing so far beyond the
range of radiocarbon. It is argued that a firm chronologi-
cal and stratigraphic foundation is the prerequisite for un-
derstanding Neanderthal behavior and its potential synchro-
nization with environmental or climatic events. Only that
way, behavioral traits can be inspected in terms of adaption
to corresponding developments and changes. This is trying
to be illustrated by conducting case studies at Khotylevo I,
Western Russia and Lichtenberg, Northern Germany at op-
posite ends of the European Plain. Very deliberately, the
surroundings of these sites were included into the consider-
ation. These can provide insightful background information,
which help to better decipher site formation processes and
may also elucidate Neanderthal habitat preferences. The two
study sites share many similarities, concerning their northern
locations, the stratigraphic potential of their embedding sed-
iment sequences and their artifact assemblages, dominated
by Keilmessers. The latter are asymmetrical, bifacial backed
knives, usually made from flint and they represent the type
tools for the late Middle Paleolithic period in Central and
Western Europe. While for both sites, previous chronologi-
cal data rather support an assignment to MIS 3, the charac-
teristics of their deposits also made an earlier occupation in
MIS 5a seem possible. This ambiguity was to be resolved us-
ing geomorphological surveys, pIRIR290 luminescence dat-
ing on potassium feldspar (ca. 30 samples) and sediment
analyses, the latter also including palynology for additional
environmental context. The chronostratigraphic results led to
a revision of the timing for the occupations at the two sites:
In Khotylevo I it happened during MIS 5a and in Lichten-
berg at the MIS 5a/4 transition. The new ages are consistent
with the stratigraphic and paleoenvironmental findings and
are therefore considered robust and reliable. They provide
evidence for an emergence of the Keilmessergruppen before
the onset of the first glacial maximum in MIS 4, which had
been a matter of debate so far. The MIS 5a/4 occupation
in Lichtenberg further demonstrates Neanderthal capability
to cope with severely cold conditions that could be recon-
structed for that phase on site.

The landscape-oriented approach of the investigations di-
rectly resulted in the discovery of two hitherto unknown oc-
cupations at the site of Lichtenberg. The first one could
be allocated to the Mid-Eemian Interglacial (Pollen Zone E
IVb/V), the second one was dated and palynologically as-
signed to the late Brörup Interstadial (ca. 90 ka, Pollen Zone
WE IIb). Since the artifacts from these two fully-forested
intervals differ from the later Keilmesser-dominated artifact
assemblages considering shape, size and tool variability, it
is proposed that changing environments co-determined the
lithic technology.

Chronostratigraphic achievements also include i) the first
comprehensive chronology for the widespread 2nd fluvial ter-
race (MIS 5b to MIS 3) on the Russian Plain, ii) a first nu-
merical age for the termination of the Brörup Interstadial (ca.
90 ka) in its type region, and iii) the first detection of climatic
fluctuations during the MIS 5a/4 transition on the European
Plain (correlated with Greenland Interstadials GI-20 and GI-

19). These findings will help to better contextualize contem-
poraneous archaeological sites in the wider region.

A PDF of this thesis and the three included journal articles
can be downloaded from: https://www.researchgate.n
et/profile/Michael-Hein-8
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December 2022

Utah State University, Logan, United States

Degree: M.Sc.
Supervisor: Tammy Rittenour

Wildfires appear to be increasing in size, severity, and fre-
quency. Land managers need information on past wildfire
behaviour to make effective and adaptive land management
plans. However, there are only a few techniques and data
sources that provide information on past fire heating. This
study aims to provide new methods to equip managers with
a more robust understanding of historic and modern fire be-
haviour. Fire behaviour is assessed using novel methods that
can assess soil and rock response to past wildfire heat expo-
sure.

This study examined samples from the 2020 Mangum
Fire, in northern Arizona. Sediment and rock were gathered
to characterize past fire heating. These samples come from
sites with differing soil burn severity (which is a measure of
how much the vegetation at the soil surface was destroyed
by fire) within the Mangum Fire burn region and sites from
outside the fire perimeter.

Luminescence (light) emitted from quartz minerals was
analysed following three methods in the lab to detect past
heat exposure. Thermally altered rock color (reddening) was
also used to assess past heating. This study demonstrates
that luminescence signals and rock color measurably alter
when heated. These methods may be able to characterize
past wildfire heating and provide a more detailed character-
ization of past fire behaviour. Understanding the difference
between past and present fire characteristics can equip land
managers to better steward complex ecosystems and the role
of fire within these communities.
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Alexander Short
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Undifferentiated Quaternary alluvial gravel deposits cap
sections of the benches of the Grand Staircase in southwest-
ern Utah. Geomorphic position and stratigraphic descrip-
tion suggest these deposits represent the remnants of aban-
doned piedmont systems and associated terrace sediments
deposited during the Pleistocene. Research focuses on the
influence of climate and geomorphic processes on late Pleis-
tocene landscape evolution of the Grand Staircase region of
southern Utah using piedmont deposits within the five ad-
joining study catchments as markers of past hillslope sedi-
ment supply and river incision. The study catchments are
tributaries to the Colorado River and have gradients with
base level being controlled by Grand Canyon. The primary
hypothesis is that piedmont gravel deposition is driven by
climate change and that deposit ages correspond to transi-
tions between glacial and interglacial conditions. Investiga-
tion and correlation of piedmont deposits is based on geo-
morphic analysis, and detailed outcrop and facies descrip-
tions of the sedimentology, stratigraphy, and soil profile de-
velopment. Age control is provided by optically stimulated
luminescence (OSL) dating of representative deposits in each
of the study catchments. Deposits of this nature can present
a unique set of challenges for OSL dating. Therefore the
character of these deposits required the implementation of
various sampling techniques.

OSL dating results suggest at minimum three syn-
chronous periods of deposition across the region during the
Late Pleistocene (53 ka to > 268 ka) separated by periods of
pronounced incision. Accommodating variability between
drainage basins, Quaternary alluvial pediments (Qap) can be
divided as follows. Qap3 deposits lie 95 to 170 m above the
modern channel and were deposited 115 to > 192 ka. Qap2
deposits lie 60 to 75 m above the modern channel and were
deposited 69 to 103 ka. Qap1 deposits lie 15 to 25 m above
the modern channel and were deposited ~ 53 ka. Secondary,
younger and conformable, depositional periods are marked
by buried soil horizons identified within Qap3 and Qap2 de-
posits. A broad comparison of the timing of deposition to
regional climate records suggests a response to climate to be
the dominant process of Quaternary aggradation and incision
of fluvial systems and overall landscape evolution.

A PDF of this thesis can be downloaded from: https:

//digitalcommons.usu.edu/etd/8651/

Angeli Vasiliki
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April 2022
Physics Department, Aristotle University of Thessaloniki,

Thessaloniki, Greece

Degree: M.Sc.
Supervisors: Professor George Kitis and Dr. George S.

Polymeris

This doctoral dissertation is related to a qualitative as
well as a quantitative correlation among Thermolumines-
cence (TL), Blue Optically Stimulated Luminescence (Blue
OSL) and Infrared Stimulated Luminescence (IRSL), for dif-
ferent natural dosimetric materials. The geological materials
that were used are, a) natural fluorite, CaF2: N, b) gypsum,
c) Durango apatite with two different grain size factions and
d) three different K-feldspar samples with code name, ELD1,
VRS3 and MRK4; each one belonging to the structural group
of microcline, sanidine and orthoclase. The above minerals
have been selected due to their specific luminescence char-
acteristics. This work consists of three experimental parts:
The first one is attempting the correlation between specific
TL glow curves and bleaching components after LM-OSL
as well as Blue CW-OSL stimulation, in the case of natural
fluorite. The second part includes three materials, Durango
apatite, gypsum and one K-feldspar. This part is studying the
correlation between the Blue CW-OSL as well as the Resid-
ual LM-OSL signal. A two-step stimulation protocol was ap-
plied including 10 different IRSL stimulation times, from 0
to 500 s. Finally, the third part is describing the correlation of
Blue CW-OSL and IRSL properties of three K-feldspar sam-
ples. The stimulation was carried out using Blue CW-OSL
and IRSL in two different two-step experimental protocols.
The complexity of both recombination pathways as well as
the efforts to correlate among the aforementioned lumines-
cence signal was highlighted in the present work.
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Conference Announcements: 14th International Conference 
“Methods of Absolute Chronology” 

 
 
 
Dear Colleagues, 
 
With a year’s delay due to the pandemic, we are back in physical form! 
 
The Gliwice Absolute DAting Methods Centre, Institute of Physics – Centre for Science and 
Education at the Silesian University of Technology would like to invite you to take part in the 
14th International Conference “Methods of Absolute Chronology”, which will be held from 17th 
to 19th May, 2023 in Gliwice, Poland.  
 
We are striving at providing a platform of exchange in the area of quaternary dating methods 
and their applications. We are looking forward to receiving submissions that will cover a range 
of subjects to foster an exchange of ideas.  
 
The conference scientific programme includes plenary and poster sessions. The working 
language of the conference is English. Any questions related to the conference can be directed 
to the e-mail address: mach2023@polsl.pl. 
 
Please register and submit your abstract on the website (https://mach2023.polsl.pl/ and 
indicate preferred session and presentation form (oral/poster). The accepted presentations 
will be published in the open-access journal “Geochronometria", following the regular 
reviewing schedule. We have secured funding to waive a fee for selected manuscripts.  

 
AREAS COVERED 
Depending on the scope of received abstracts the following list may be updated by the 
Scientific Committee:  
 

Terrestrial archives Applications in geosciences 
Advances in luminescence dating Diet/stable isotopes 

Geoarchaeology Advances in radiocarbon dating 
Mortars Applications in archaeology 

Anthropocene/anthropogenic impact Bio-components/biofuel 
  
  

 
IMPORTANT DATES 
Registration starts: 19 December 2022 
Submission of abstracts and registration: 11 March 2023 
Abstract acceptance: 31 March 2023 
Payment: 10 April 2023 
Second circular: 31 March 2023 
Conference: 17-19 May 2023 
Submission of manuscripts: 30 June 2023 

 
On behalf of the Local Organising 
Committee 
Piotr Moska and Grzegorz Adamiec 

https://content.sciendo.com/view/journals/geochr/geochr-overview.xml
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Conference Announcements: German LED 2023 
 

 
 
Save the Date: 
 
German LED meeting 
9th – 11th November 2023 
Innsbruck 
Austria 
 
Details will be announced here in February 2023:  
https://quaternary.uibk.ac.at/Research/Current-Research/Luminescence-
geochronology.aspx 
  
Any requests for joining the e-mail distribution list please direct to: Michael.Meyer@uibk.ac.at 
 
 
Best wishes, 
Michael Meyer 
 

https://quaternary.uibk.ac.at/Research/Current-Research/Luminescence-geochronology.aspx
https://quaternary.uibk.ac.at/Research/Current-Research/Luminescence-geochronology.aspx
mailto:Michael.Meyer@uibk.ac.at
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