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Abstract
This paper presents a protocol for safe quartz
etching with hydrofluoric (HF) acid as part of
sample preparation for luminescence dating.
Concentrated HF is extremely hazardous and
can cause severe burns and poisoning, even
leading to death. Generally, in order to avoid
exposure to light and bleaching, HF etching is
performed in a dark laboratory under weak
orange-red light in wide-open beakers. Han-
dling HF in open beakers in the dark could
result in unfortunate accidents due to uninten-
tional spillage. The presented protocol avoids
these two main safety issues – working with
open beakers and under poor lighting. The
samples are etched inside black opaque bottles
with narrow openings so that the procedure can
be safely performed in comfortable light levels.
To validate the harmlessness of the laboratory
environmental light, bleaching experiments
of quartz were conducted under the same
conditions as the protocol. These showed that
no bleaching occurred during this procedure.

Keywords: Hydrofluoric acid, Quartz-etching

1. Introduction
Extraction of quartz and alkali-feldspar (KF) grains for

luminescence dating includes etching with hydrofluoric (HF)
acid (Aitken, 1985; Wintle, 1997), which is highly corrosive.
Different laboratories have varying practices, but generally,
quartz grains are etched with concentrated HF (40 – 48 %)

for at least 40 minutes. This step is essential for dissolving
feldspars, removing clay or iron oxide coating on the grains,
and etching the outer rim of the quartz grains affected by
alpha particles during burial. Regarding KF etching, the pro-
cedure is less uniform across laboratories. As feldspar is af-
fected much faster by the HF, the grains are usually etched
with diluted acid (10 %) for various durations (0 – 40 min).
Porat et al. (2015) investigated the KF grain size reduction by
different HF treatments and suggested etching the feldspars
with 10 % HF for 10 min.

HF acid is extremely hazardous as it can cause severe
burns and poisoning (Bertolini, 1992; Wang et al., 2014),
even leading to death (Muriale et al., 1996). Therefore, it
should be handled with extra caution, and any work with it
should be carried out in designated fume hoods. For safety,
one usually wears additional protective clothing such as a lab
coat, closed shoes, protective goggles, suitable gloves, a rub-
ber apron, and rubber sleeves.

Generally, in order to avoid exposure to light and bleach-
ing, the HF etching procedure is performed in a dark labora-
tory under weak orange-red light in wide open beakers using
access HF acid. Even when taking all precautions, handling
HF in open beakers under insufficient light could result in
unfortunate accidents due to unintentional spillage.

The luminescence laboratory at the Geological Survey of
Israel (GSI) developed a protocol for HF etching that avoids
the two main safety issues – open beakers and poor light-
ing. The protocol was tested on samples that had also been
prepared in other laboratories using more conventional pro-
tocols, such as coastal sediment from the Skagen peninsula,
Denmark, and no difference was found in the measured De
values (Murray et al., 2015). Here, we describe the safe pro-
cedure for HF etching as part of sample preparation for lu-
minescence dating.
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Figure 1. Setting of the HF etching procedure within a chemical fume hood. a) The HF is transferred from the HF bottle to the sample bottles
through the peristaltic pump. The cup connected to the pump tube (sample closest to the pump) is moved from one sample to the next. b)
The bottle cap that is moved from sample to sample has two holes, one with the exact diameter of the tube, where it is placed, and a smaller
one to release air. c) After 40 minutes of soaking, the spent acid is carefully poured into a waste bottle. Note that the sample will settle in the
shoulder of the bottle.

2. Procedure description

The HF etching protocol uses 250 mL black, light-tight
polyethylene bottles with caps and a narrow opening that
prevents any light from reaching the bottom of the bottle
(Fig. 1). About 3 g from each sample is weighed into a bot-
tle in the dark, and the cap is replaced. From this step, the
procedure is continued with comfortable light levels within
a chemical fume hood. If there are no windows introducing
daylight into the preparation laboratory or white light lamps,
this procedure can be carried out at any chemistry laboratory.
A fixed amount of HF (5 mL per 1 g quartz) is pumped into
the bottles one after the other using a calibrated peristaltic
pump and a timer. Each sample is soaked for 40 minutes
in the HF. During this time, the bottles are repeatedly shaken
every few minutes. After 40 minutes, the spent acid is poured
out into a designated waste disposal container (Fig. 1), and
the bottle is filled with water for a first rinse. After about
a minute, this first rinse is carefully poured out, and water
is added for a second rinse, after which the bottle is closed

and ready to be returned to the dark lab. There, each sample
is transferred to a corresponding beaker for three additional
rinsing steps. Then, the samples are placed in 16 % HCl
overnight to dissolve fluorides. The next day, the samples are
thoroughly rinsed and dried, ready for measurements. For
safety reasons and convenience, this protocol is carried out
by two people, although one can easily do it alone.

Peristaltic pumps are used in geochemistry laboratories to
transfer solutes into analytical instruments. Their advantage
is that they are quiet, can be adjusted to pumping exact vol-
umes over a given time, and when turned off, the pipe with
the acid does not drip, so that the HF does not drip in the
few seconds, it takes to transfer the pipe from bottle to bot-
tle. Before starting, one should calibrate the volume of the
liquid pumped over one minute (no need to use HF for that;
water is just as good). Hypothetically, the pump can work
faster and pump the required HF volume over less time so
that more samples can be etched in a single batch. Depend-
ing on the available pumping rate and amount of feldspar
contamination, each laboratory can work out their batch so

2
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Figure 2. Quartz bleaching experiment inside the black bottles used for HF etching. a) The experiment setup within the fume hood. One disc
is settled in each bottle. The numbers on the bottles are the bleaching durations in minutes. b) The experiment results. The inset–bleaching
experiment results in full sunlight.

that it would finish well under 40 minutes (or the laboratory’s
standard etching time).

The amount of quartz etched from each sample is usu-
ally 3 g – if available – or less. Three grams were found
to be sufficient even if half the amount was lost by disso-
lution and some spillage during rinsing. Even if only 1 g
remains, one can make more than 100 x 9 mm aliquots or
1000 x 2 mm aliquots. Smaller quantities require more care-
ful handling, but even 200 mg of final weight is sufficient for
ordinary samples. Smaller amounts of quartz mean less HF
used, which is beneficial on all accounts.

Following the recommendations of Bell & Zimmerman
(1978) and Aitken (1985), it is postulated to etch the outer
10 mm of the quartz grains to neglect the alpha radiation
from the dose rate evaluation. For etching quartz, about
5 mL of HF for each gram of sample is sufficient. Adding
more acid does not remove more than the required 10 µm
(Porat et al., 2015). However, if large amounts of feldspars
are present (e.g. when samples are treated to only a single
density separation of 2.62 g cm-3), the volume of HF should
be doubled or even tripled to allow the complete dissolution
of feldspars.

Before the etching procedure, it is essential to ensure that
all the carbonates in the sample have been dissolved in ad-
vance by HCl. Any remaining CaCO3 will strongly react
with the HF and form hard-to-dissolve calcium fluorides. Po-
rat et al. (2015) showed that even after complete carbonate
dissolution, some fluorides are still formed during the HF
etching process. The source of the Ca is probably from pla-
gioclase in the sample. Nevertheless, these dissolve later in
the following HCl treatment (Porat et al., 2015).

Here is a working example from the GSI for a 40 minutes
etching (procedure video is available at https://youtu.
be/lZbMpKDgf-s): There are 18 samples in a batch. Three
grams of quartz are weighed from each sample. Most sam-
ples contain little feldspars, so 15 ml of HF (5 mL x 3 g) is

sufficient. The pump is set for a flow of 10 mL per minute, so
the pumping time is 1.5 min. With 15 – 20 seconds added for
moving from sample to sample, it takes roughly 1.75 min per
sample. This works out fine as the filling time for the 18 sam-
ples will be 1.75 min x 18, i.e. 32 minutes. Thus, pumping
HF to the last sample ends about 8 minutes before the first
sample needs to be rinsed, leaving time for the unexpected.

HF etching affects grain’s morphology differently, de-
pending on their content, structure, and sedimentary maturity
(Bell & Zimmerman, 1978; Porat et al., 2015). Duval et al.
(2018) recommended that each laboratory evaluate the outer
rind thickness etched by their procedure. For the presented
procedure, it was reported on removal of 10 – 50 µm from the
quartz rims depending on the sedimentological maturity and
mineral purity (Porat et al., 2015). For quartz grains of ma-
ture sedimentary origin, 10 µm were etched as desired. For
grains from immature sources, the grain size was reduced by
up to 50 µm, primarily due to breakage along etched plains.
Therefore, after the HF etching, for immature sediments, it is
recommended to sieve at 20 µm below the original grain size
to get rid of the broken grains.

3. Bleaching experiments

As the procedure is performed under regular laboratory
fluorescent light, it was essential to ensure that the lumines-
cence signal of the samples does not undergo any bleach-
ing. In order to do so, a bleaching experiment was con-
ducted. Five mm aliquots of purified quartz (sample FGA-
26 from Faershtein et al. 2016) were placed in empty, open
250 mL black bottles, used for the HF etching procedure,
for different periods of time up to 80 min, with the fluores-
cent lights turned on (Fig. 2a). Three aliquots were used for
each bleaching duration (each aliquot was placed in a sepa-
rate bottle). The bottles were placed 25 cm from the fume
hood opening. The average light intensity next to the bot-
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tles was measured at 170 lux. For comparison, a bleaching
experiment was also conducted for the quartz grains in full
sunlight (light intensity was measured at 57000 lux).

The experiment indicates that after 80 min inside open
black bottles, the OSL signal is reduced by up to 10 % of
the original signal (Fig. 2b). Some of the aliquots are not
bleached at all. One of the aliquots that was bleached for
10 min showed a bleaching of 13 %, increasing the aver-
age bleaching for this duration. It is possible that the disc
was accidentally exposed to direct fluorescent light during
the experiment’s setup. Excluding this disc, after 10 min of
bleaching within the black bottles, the signal was bleached
by 5 %. In contrast, in full daylight, the OSL signal of the
quartz grains is reduced to less than 5 % after 5 s. It is impor-
tant to note that while in the bleaching experiment, the black
bottles were left open for the entire experiment time, dur-
ing the HF etching procedure, the cap is removed only for a
few seconds. Also, during the experiment, all the fluorescent
lights in the laboratory were turned on, while during the pro-
cedure, we turn off the lights near the fume hood. Therefore,
there is no risk of bleaching during this protocol.

4. Summary

We described a protocol that avoids the most risky factors
of using HF in luminescence dating: working in the dark and
pouring HF into open beakers. Any lab that had a beaker ac-
cidentally turned over would appreciate it. It is also light-safe
and avoids any access exposure of the samples to laboratory
light. This protocol was devised over 22 years ago and has
since been used 10 – 15 times yearly. Not a single accident
with HF body exposure happened during that time. This pro-
tocol is also economical regarding HF; only 15 mL are used
per sample. We deem this protocol as very safe and encour-
age other laboratories to adopt it or a variation of it.

Appendix: HF etching protocol

Equipment list:

1. Samples (18 in the case of the GSI)
2. Labeled black, opaque polyethylene bottles with caps,

one for each sample; 1 cap has two holes for the tube and
air.

3. Suction tube with stopping restrains, about 60 cm long
4. Peristaltic pump, calibrated (calibrated pumping rate at

the GSI is 10 mL per minute)
5. Concentrated HF acid (40%) bottle with a narrow opening

(Fig. 1a)
6. Any plastic bottle (250-500 mL) with a tight screw cap

to collect the spent HF, to be later disposed with other
chemical waste.

7. Timer
8. Watch with minutes

Procedure

In the dark lab:
• Weigh about 3 g sample into a bottle and close with the

cap.
• If there is less than 3 g of quartz, mark the weight on the

label.
• Repeat for all samples.

In a lit lab in a fume hood (procedure video is available at
https://youtu.be/lZbMpKDgf-s):
• Put on safety gear.
• Turn off fluorescent lights near the fume hood but leave

other lights on for comfortable vision; turn on ventilation
in the fume hood.

• Set up the peristaltic pump. Put one end of the tube into
the HF bottle and the other into the black sample bottle lid
with the holes.

• Turn on the pump and turn on the timer, wait the designated
time (marked by the timer), and turn the pump off (for the
first sample, start the timer only when the acid reaches the
sample bottle).

• The pierced lid with the tube will now be passed to the
following sample, while at the same time, a normal lid will
be placed on the sample that has just received HF. Partially
close the lid on the first sample to allow for any gasses
to be emitted and, at the same time, prevent unnecessary
exposure to light. Exchange lids as quickly as possible.

• Repeat for all samples. From time to time, twirl the waiting
bottles. In the last sample, take the tube out of the HF
bottle after a minute and let the tube empty into the black
bottle.

After 40 minutes of introducing HF to the first sample:
• Open the first sample and carefully drain most of the spent

HF into the waste bottle. The grains will collect in the
bottle’s shoulder. Add 200 mL water, close, and set aside.
After the following sample is drained and filled with wa-
ter, return to the first sample, slowly pour most of the wa-
ter into the sink while the water is running, and refill with
~200 mL water. Close the bottle tightly and place it away.
Your first sample is done.

• Continue with the next bottle. Note that one rinse takes
place right after draining the HF, the second a few minutes
later, after the following sample has been drained. That
leaves time for the grains to settle.

• If there is a very little sample (less than 0.5 g), leave it in
HF for only 20 minutes so that not all is dissolved, and be
extra slow and careful when pouring out and rinsing.

• Now the samples are ready to be returned to the dark lab for
additional rinsing and following quartz extraction steps.
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Abstract

In the present work the LF02 automated
luminescence reader is introduced. The con-
struction of the LF02 is part of a project
aimed at creating capacities to support the
activities of the luminescence dating laboratory
at CEADEN in terms of carrying out sediment
dating and basic research on quartz lumines-
cence. To accomplish this task, a robust design
with a basic structure capable of executing long
measuring sequences was proposed. Along with
the description of the reader, design concepts
aimed at reducing the measurement time are
analyzed in detail. To evaluate the effect of
each design idea, the term reader productivity
is defined. For the evaluation of the LF02
productivity, two different cases are analyzed.
In the first one, the sample dose to recover is
equivalent to 151 s of beta irradiation, while in
the second case the time of irradiation is 833 s.
The results show that the introduction of these
ideas produces a significant reduction of time
needed for completing a SAR sequence.

Keywords: luminescence dating, automated
reader, quartz

1. Introduction

After the pioneering work by Huntley et al. (1985)
proposing the optical dating of sediments and the subsequent
standardization of this method through the development of
the single aliquot regenerative dose (SAR) protocol (Murray
& Wintle, 2000), optically stimulated luminescence (OSL)
has become the major dating tool in Quaternary geology,
at least for the past 100 000 years (Wintle, 2008). There
is no doubt that the development and commercialization of
automated luminescence readers, specifically designed for
this application (Bøtter-Jensen et al., 2000; Bortolot, 2000;
Richter et al., 2013), has played an important role in the
dissemination of this technique. Single grain measurements
based on laser stimulation (Duller et al., 1999; Bøtter-Jensen
et al., 2003), new more powerful stimulation systems includ-
ing violet excitation wavelengths (Jain, 2009; Lapp et al.,
2015), pulsed excitation-detection systems for time resolved
OSL measurements (Denby et al., 2006), EM-CCD detection
systems (Kook et al., 2015) and the introduction of small X-
ray irradiation sources (Thomsen et al., 2006) are some ex-
amples of the new capabilities added in recent years to these
instruments.

In Cuba, the correct description and interpretation of the
Quaternary geology requires the establishment of the abso-
lute ages of rocks and sedimentary deposits. Also, the de-
velopment of policies to reduce the impact of sea level rise
on the Cuban territory requires the assessment of recent tec-
tonic movement in coastal areas. In both cases, OSL dating
is a valuable technique. This explains the interest in creat-
ing national capabilities to carry out sediment dating studies

6
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Figure 1. View of the LF02 automated reader

using the OSL technique.
While most of the equipment employed in dating labora-

tories can also be used in other scientific laboratories, the au-
tomated OSL readers are more specific, which makes them
expensive and difficult to maintain. Also, for some coun-
tries the access to this instrument is limited by export restric-
tions associated with the radioactive source incorporated into
them. Therefore, the development of an automated reader
was one of the goals of the project for the creation of the
luminescence dating laboratory at CEADEN.

The present paper describes the LF02 automated lumines-
cence reader, routinely used at the CEADEN dating labora-
tory. Due to the initial projection that only a single reader
would be available, the reduction of the measuring time
guided the conception and design stages. Therefore, along
with the description of the reader, the design concepts aimed
at reducing the measurement time are analyzed in detail.

2. Measuring time and reader productivity

In the present work, the measuring time is defined as the
time needed to complete a sequence based on the SAR pro-
tocol (tSAR). To propose solutions with a positive impact on
the measuring time, a conceptual analysis of the dependence
of tSAR on the experimental variables becomes necessary. In
general, tSAR can be defined by the following equation:

tSAR = tI + tM (1)

Here, tI is the total time used for sample irradiation, while
tM represents the duration of all the processes linked to the

luminescence measurement such as preheating, OSL mea-
surement or illumination. Both, tI and tM, include the time
spent on sample positioning.

In Equation 1 it is assumed that at any moment, just one
process, irradiation or measurement, is taking place. In the
case when irradiation and luminescence measurement are oc-
curring simultaneously, tSAR needs to be represented differ-
ently:

tSAR = tI +(1−b) · tM (2)

Here b is a parameter describing the time overlapping be-
tween both processes, and its value ranges from 0 (no over-
lapping) up to 1 (full overlapping). Equation 2, as a more
general case, reveals the pathways to reduce tSAR. The first
approach would be the reduction of tI or tM; the second one
would be the execution of the sequence in a way that mea-
surement and irradiation are run simultaneously.

tSAR depends on several factors such as the number of
aliquots, the number of points used to construct the dose re-
sponse curve, the equivalent dose of the sample and the dose
rate of the beta source. Therefore, the use of tSAR to evaluate
the reduction of the measuring time has practical value only
when the experimental parameters are fixed. Thus, it would
be useful to have an indicator of the reader time performance,
even when the experimental conditions are different. With
such a purpose the term reader productivity (Pr) is proposed.
Pr is defined by the following expression:

Pr =
De · NL · Na

tSAR · Ḋβ

(3)

Here De is the sample equivalent dose (Gy) (previously
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Figure 2. The schematic representation of the of the LF02 measuring chamber. The axes and arrows show the displacement of the moving
elements. 1 - sample holder, 2 - measuring arm, 3 - irradiation arm, 4 - LEDs, 5 - PMT, 6 - beta source, 7 - slit for sample entry into the
irradiator, 8 - sample disc.

known or measured after running the SAR sequence); NL is
the number of data types in the sequence; Na is the number of
aliquots, Ḋβ is dose rate (Gy/s) of the beta source and tSAR (s)
is the time the reader needed to complete the SAR sequence.
Even when this definition may not consider all the situations,
it describes the reader time performance: the higher the value
of Pr the better the reader time performance.

3. The LF02 automated reader

The LF02 (Fig. 1) follows the basic structure of this sort
of instrument: A beta irradiation source (on the left) used
for in-situ irradiation, a stimulation detection system (on the
right) based on an array of LEDs, a photomultiplier working
in the photon counting regime, and the automated sample po-
sitioning system holding up to 24 samples. The reader, which
is controlled from a computer, has also supporting electron-
ics with its associated software. The measuring chamber of
the LF02 was designed to support vacuum. Vacuum condi-
tions are expected to be needed for the future development
of optically stimulated electron (OSE) measurement capabil-
ities(Ankjærgaard et al., 2009).

Two mechanical arms pick up sample discs from the
holder and place them in the beta irradiator or in the
stimulation-detection unit, allowing that any sample can be
irradiated while any other is being measured (Fig. 2). A short
presentation showing the sample positioning system in action
can be found at https://www.youtube.com/watch?v=

_znlq6wXB94. The arm taking samples to the stimulation-
detection unit includes a Kanthal resistive heater that reaches
500 °C with a maximum heating rate of 20 °C/s. The heating
rate and temperature stabilization is realized through a tuned
digital PID control system with a 2 °C maximal error.

The optical stimulation system comprises 8 ports for in-
stalling LEDs. Four of them are used for 1W blue LEDs
with focusing optics (λ= 470 nm, PT = 200 mW in the sam-
ple zone); two for IR LEDs with focusing optics (λ= 850
nm, PT = 150 mW in the sample zone), and the other two
are auxiliary ports for a wide range of applications, includ-
ing another set of LEDs with different wavelength emission.
Each LED unit is controlled by a current feedback stabiliza-
tion system. During the design of the stimulation unit, spe-
cial care was taken to produce a homogeneous illumination
pattern at the sample position (Quesada et al., 2004).

For luminescence detection, the LF02 uses a 9235QB
photomultiplier. The quartz OSL is filtered with 7 mm of
ultraviolet glass filter UFC6 with a maximum transmittance
at 360 nm, comparable to the commonly used U340 filter.

A 90Sr/90Y beta source, used for in-situ irradiation, pro-
vides a dose rate of 0.033 ± 0.002 Gy/s. For irradiation,
the sample disc is introduced inside the irradiator shielding
through a small slit (Fig. 2). Once the sample is in the irra-
diation position, the radioactive source, which is mounted in
a horizontal rotating cylinder, is turned 180° from its park-
ing position to the irradiation port. To irradiate highly sen-
sitive luminescence detectors, such as Al2O3:C (Akselrod
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Figure 3. The sample holder, hosting up to 24 discs (below), and the
container.

et al., 1990), a low dose rate (0.5 µGy/s) Bremsstrahlung
(X-Rays) irradiation mode was implemented (Burbidge &
Duller, 2003). This method differs from the beta irradiation
mode in that during the irradiation the source remains at the
parking position.

The sample holder has two sections (upper and lower),
each one holding up to 12 samples. The sample holder is as-
sembled with a light-tight container (Fig. 3), to keep the sam-
ples in the dark. Once the container with the sample holder
is coupled to the reader, the sample positioning system dis-
engages the sample holder from the container and introduces
it into the measuring chamber without exposing to the light.
Taking advantage of this feature, the LF02 is installed in a
room with no red-light illumination system.

The electronics of the LF02 is designed to resolve the si-
multaneous control of irradiation, sample positioning, sam-
ple heating, luminescence measurement and data transmis-
sion. The electronic core of the LF02 uses the FPGA tech-
nology. Measuring modes such as TL, CW-OSL, LM-OSL
and POSL are implemented with a maximum time resolu-
tion of 500 ns per channel and 32 bits / 120 MHz counting
system.

The measuring sequences for the LF02 are generated with
an application called GenSec. GenSec is a home-made ap-
plication and generates a perfectly readable xml-format file
with an .slf extension. The sequence file includes general in-
formation, the measuring parameters and the status of each
process, indicating if the process is pending, running or done.
An example of the sequence file can be found in the Supple-
mentary Material.

To run the sequence, the defined sequence file is loaded

by another application called GenExe, which communicates
with the reader and controls the execution of the sequence.
In the LF02, the input and output files have the same format.
As the measuring process goes, the status of each process
is updated and the results of the measurement and the time
of measurement are appended to the sequence file for subse-
quent analysis. This allows sequence pausing, and resuming
later from the first pending process.

4. Methods for tSAR reduction
In this section the methods implemented in the LF02

reader to reduce tSAR are explained. The methods are pre-
sented according to their impact on the time reduction start-
ing from the one with least impact.

a) Increasing the optical stimulation power. Assuming that
the OSL curve is described by a single exponential de-
cay I(t) = I0e−σ(λ )PLEDt , where σ (λ) is the photoioniza-
tion cross-section and PLED is the intensity of the optical
stimulation radiation (Kuhns et al., 2000), then the higher
the value of PLED the faster the decay. Presently avail-
able blue LEDs with enhanced optical power allow the
construction of optical stimulation units with stimulation
power at the sample position exceeding 200 mW/cm2.
Figure 4 shows the OSL curve measured in the LF02
reader with 90% of the maximal optical power of a fast
component dominated quartz irradiated to 5 Gy. As it
is observed, only 10 seconds are needed to measure the
whole decay curve.

b) Merging processes during OSL measurements. Each cy-
cle of the SAR protocol comprises a group of processes
such as preheating and OSL measurement, sequentially
executed one after another in the stimulation-detection
unit. When these processes are executed individually, af-
ter finishing each process the sample disc is returned back
to the sample holder following a cooling down process.
The merging concept implements two ideas: firstly, sam-
ples are not sent back to the sample holder until the last

Figure 4. OSL curve for the 5 Gy reference quartz material.
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Figure 5. The continuous temperature profile of the merged preheat-
ing and OSL measurement processes. The dashed curve shows the
effect of the gas jet fast cooling on the profile.

process of the group is executed; and secondly, the sample
is heated with a continuous temperature cycle, and only
when the last process in the group is executed, the sam-
ple is cooled down to the safe temperature. With these
ideas, the time used in sample positioning and in cooling
down the sample is reduced. Figure 5 shows the tem-
perature profile of a merged pre-heating and OSL mea-
surement. After linear pre-heating to 220 °C, and keeping
that temperature for 10 s, the sample is not returned to
the sample holder; the system waits for the natural de-
crease of sample temperature to 125 °C and following a
temperature stabilization, the OSL curve is measured for
10 s. Then the sample is cooled down to a safe temper-
ature (60 °C) after which the sample is sent back to the
holder. The merging of the OSL measuring processes is
defined during the sequence edition. After defining indi-
vidual processes, the processes to be merged are selected
and the command “MERGE” is applied.

c) Fast cooling. Before the sample is returned to the sample
holder the system waits until the sample cools down to a
safe temperature of 60 °C. If the cooling process is based
on the natural heat exchange, depending on the sample
temperature it may take 1 – 2 minutes before the safe tem-
perature is reached. To reduce this time, in the LF02 a
gas jet nozzle located beneath the heater is used to rapidly
cool down the sample at the end of the heating profile.
With this system, the cooling down process from 125 °C
is reduced from 1 minute to less than 20 seconds (Fig. 5).

d) Two-queues scheme. In the LF02 reader, a sequence can
be executed using three different schemes. The first one
is the “first sample first” (FSF) scheme, in which all the
processes of the first sample are executed first; and then
all the processes of the second sample, and so on. The
second scheme is the “first process first” (FPF) scheme,
in which the “first process” of all the samples is executed
first and then the “second process” of all the samples and

so on. The third scheme, which is based on the possibil-
ity of independently moving samples to irradiation or to
the measuring unit, is called “two-queues” (2Q). In the
2Q scheme both types of processes, irradiation and mea-
surement, are run simultaneously. As soon as the system
detects that either the irradiation source or the measur-
ing system is available, it looks for a sample, whose first
pending process matches the type of the available port and
executes it. Using this scheme, due to the time overlap-
ping of the irradiation and measuring processes, a reduc-
tion of the overall measuring time is produced.

e) External irradiation. As it was explained above, the sam-
ple container of the LF02 allows the transport of the sam-
ple discs without exposing them to light. In addition to
this, the small sizes and the thin walls of this aluminum
container make possible the simultaneous irradiation of
all the samples by irradiating the container in a gamma ir-
radiation facility, avoiding sample disc manipulation. For
old samples requiring long times of beta irradiation the
external irradiation is a convenient method to reduce the
irradiation time when all the samples are expected to re-
ceive the same dose. The external irradiation is defined
during the sequence edition as an independent process.
When the LF02 finds an external irradiation process the
sequence advances until all the samples are waiting for
the external irradiation. After this point the reader auto-
matically sends the sample holder to the container and ad-
vises the operator of an awaiting external irradiation. The
external irradiation can reduce the overall irradiation time
of a single dose point from several hours to some minutes.
Due to the relatively high dose rate of gamma irradiation
facilities, the external irradiation is not suitable for young
samples.

5. Materials and methods
A previously sensitized quartz material with diameters

between 180 and 250 µm and showing a predominant fast
component in the OSL signal was used to prepare two sam-
ples. The first sample is an internal reference material
gamma irradiated in a 60Co secondary calibration facility to
5.0 ± 0.1 Gy. The other sample was irradiated in a gamma
irradiation facility at CEADEN for 300 s. The dose received
by this sample was measured in the LF02 reader using a stan-
dard SAR protocol resulting in a dose of 27.5 ± 1.6 Gy. For
these two samples a 6 mm diameter spot of quartz grains was
mounted on a stainless steel discs.

The reference conditions for the SAR protocol were: Pre-
heat temperature, 220 °C at 5 °C/s for 10 s; cut heat 200 °C
at 5 °C/s for 5 s; optical power = 25%; OSL measuring time
40 s and test dose of 30 s. The preheat temperature was
determined from a preheat plateau test. When using in-
creased optical power (90 %), the conditions are the same
except the OSL curve was measured during 10 s. Using
the reference conditions, the beta dose rate was found to be
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Procedure Procedure tSAR Time
Pr De(Gy)

designation description (hours) reduction (%)
A0 5 Gy sample, PLED=20%, 23 - 0.26 5.0 ± 0.2

no merging, no fast cooling,
FPF mode

A1 5 Gy sample, PLED =20%, 16 31 0.37 5.1 ± 0.1
no process merging, fast cooling,
FPF mode

A2 5 Gy sample, PLED =90%, 12.5 45 0.48 5.1 ± 0.2
process merging, fast cooling,
FPF mode

A2-2Q 5 Gy sample, PLED =90%, 10 56 0.60 4.8 ± 0.2
process merging, fast cooling,
2Q mode

A2-2Q-HD 27.5 Gy sample, PLED =90%, 16.3 - 2.24 27.5 ± 1.6
process merging, fast cooling,
2Q mode

A2-2Q-EXT 27.5 Gy sample, PLED =90%, 10 38 3.66 26 ± 2.4
process merging, fast cooling,
2Q mode, external irradiation

Table 1. Comparison of the time needed to complete a SAR sequence (tSAR) and reader productivity (Pr) using different procedures. The time
reduction is calculated using procedures A0 and A2-2Q-HD as reference for the 5 Gy and 27.5 Gy samples respectively. The equivalent dose
(De) obtained for each procedure is also presented.

0.033 ± 0.001 Gy/s. At this dose rate, the 5 and 27.5 Gy
doses are produced after 151 and 833 s of irradiation respec-
tively.

A 60Co gamma irradiation facility was used for external
irradiation. With the purpose of homogenizing the dose, dur-
ing the external irradiation the container is mounted in a spin-
ning system. To achieve irradiation uniformity better than
4% only the upper section of the sample holder was used
(12 samples). Considering the beta dose rate as a reference
value, the dose rate of the irradiation facility at the time of
this experiment was 0.090 ± .006 Gy/s (324 ± 22 Gy/h),
which is 2.7 times higher than the beta source dose rate. The
overall transient dose appearing during the introduction and
extraction of the container was 1.02 ± 0.05 Gy.

The value of tSAR is defined as the time for completing
a sequence of SAR protocol on 12 aliquots. Beside of the
initial dose measurement (L0) , the OSL response for three
dose points (L1, L2, L3) was used for the construction of
the dose response curve. Two additional measurements were
used for recuperation (L4) and recycling (L5) tests. A con-
stant test dose of 30 seconds irradiation was given after the
measurement of each dose point; and the corresponding OSL
response (T0 trough T5) was measured. For the 5-Gy sample,
the dose points were 100, 150 and 250 s of beta irradiation;
for the 27.5 Gy sample, the dose points were 700, 850 and
1000 s of beta irradiation and when the gamma irradiation
facility was used, the irradiation times were 270, 300 and
400 s. In the last case additional 20 minutes per irradiation
point were employed for sample transferring and preparative

works.
For both samples a linear regression was used to construct

the dose response curve. For the 5 Gy sample the regression
coefficient was better than 0.99; for the 27.5 Gy sample the
regression coefficient was lower, 0.98, due to non-linear be-
havior of the dose response curve in that region. The criteria
for aliquot acceptance were 1.00 ± 0.05 for the recycling
ratio and 0.00 ± 0.05 for the recuperation. Among the 72
aliquots used in this study only 2 were rejected.

6. Results
Six different procedures were used to evaluate the pro-

posed methods of time reduction. The procedures use dif-
ferent combinations of the methods proposed above. Table 1
shows the designation and the description of each procedure.
The procedure denoted as A0 uses the reference conditions
for the SAR protocol described in the previous section and
it is executed with FPF scheme. The A1 procedure uses
the same conditions as the A0 but the fast cooling method
is added at the end of each heating profile. The A2 pro-
cedure combines increased stimulation power (90%), merg-
ing of processes during OSL measurement and fast cooling.
Both A1 and A2 procedures are executed with FPF scheme.
The A2-2Q procedure uses the same conditions as A2 but in-
stead of using FPF scheme uses the 2Q scheme of sequence
execution. All these procedures were tested with the 5 Gy
sample.

For the 27.5 Gy sample the reference procedure is the A2-
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2Q-HD. This procedure uses the same time reduction meth-
ods used in the A2-2Q procedure, and is denoted differently
to mark the measurement of a sample with higher equivalent
dose. The A2-2Q-EXT procedure uses the same conditions
as A2-2Q-HD, with the difference that the dose points of L1,
L2, L3 and L5 are given externally while test doses are given
with the beta source. The results are presented in Table 1.

When comparing the procedures used in the 5-Gy sample,
it is observed that the application of each method produces
a reduction of the 23 hours needed for completing the ref-
erence procedure A0. In this sequence, the total irradiation
time is 3.2 hours; which indicates that most of the time is
dedicated to luminescence measurement.

The fast cooling introduced in the A1 procedure drasti-
cally reduces tSAR. The reason of this significant time reduc-
tion is due to the reduction of time needed to cool down to
the safe temperature, especially after preheating to 220 °C.
The incorporation of other methods in A2 and A2-2Q proce-
dures, allows decreasing the measuring time to less than half
the time used in the reference method A0. When using Pr to
analyze reader time performance, an increment of its value is
observed as new methods of time reduction are added

In the case of the A2-2Q-HD procedure, the time needed
to deliver a beta dose point is several times longer than the
time spent in executing the group of processes to measure a
single OSL signal; therefore, an almost complete time over-
lapping should be expected. For this procedure, the value
of tSAR (16.3 hours) is close to the total irradiation time
(13.8 hours); indicating that the luminescence measuring
process occurs behind the irradiation. Although the total irra-
diation time of the A2-2Q-HD procedure is 4.3 times greater
than the one of A2-2Q, the corresponding ratio for tSAR is
less than 2. This is explained because in the low dose case,
the time overlap is very low and very often the sequence gets
blocked waiting for a luminescence measurement process to
be finished. Finally, the application of the external irradiation
method reduces the measuring time by nearly 40%, however
this time reduction is principally due to the reduction of the
irradiation time.

The evaluation of Pr for all procedures is also shown in
Table 1. It can be observed that, as new methods of time
reduction are applied, the reader productivity increases. A
significant increment is found after the application of the fast
cooling method. Another important increment is observed
from the A2-2Q procedure to the A2-2Q-HD; confirming
the previous conclusion that the 2Q scheme is more effec-
tive when beta irradiation times are longer than the typical
3-4 minutes duration of the luminescence measuring process
(see Fig. 5). As expected, the higher Pr is obtained for the
A2-2Q-EXT procedure in which all the proposed methods
are combined.

The methods used here to reduce tSAR change the condi-
tions under which the equivalent dose is normally measured:
higher photon counting rates, continuous heating profile, fast
sample cooling, etc. Therefore it is important to check that
these modifications do not produce significant variations in
the measured equivalent dose. The results of this study are

presented in Table 1. In the case of the 5-Gy sample, the
results show that there is good agreement between the pro-
cedures and that all the procedures give a result close to the
expected dose.

From the point of view of measuring conditions, there is
almost no difference between A2-2Q and A2-2Q-HD proce-
dures, except a higher photon counting rate during the OSL
measurement in the A2-2Q-HD procedure. Nevertheless, for
the 27.5 Gy sample used in this procedure, the photon count-
ing rate is quite below the maximal counting rate of the de-
tection system. Therefore, the accuracy of the 27.5 Gy dose
obtained with the A1-2Q-HD method can be inferred from
the correctness of the A1-2Q method, previously established.
The comparison of the results given by A1-2Q-HD and A1-
2Q-EXT methods shows good agreement, noticing a higher
dispersion for the A1-2Q-EXT method; mainly motivated by
the operator intervention during the gamma irradiation pro-
cess.

7. Conclusions

The LF02 automated luminescence reader, routinely used
at the CEADEN dating laboratory, has been described. Five
methods proposed to reduce the time spent on equivalent
dose measurements using the SAR protocol were evaluated.
Three of these methods are related to the reduction of the lu-
minescence measuring time, one related to the reduction of
the irradiation time and the other oriented to produce time
overlapping of irradiation and measurement. The applica-
tion of these methods allowed a time reduction to less than
half of the time without the implementation of the methods.
The proposed Pr parameter proved useful for evaluating the
reader productivity under different conditions. Based on the
increment of Pr, the application of all these methods im-
proved the reader time performance.
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Salt marshes are regarded as one of the world’s most pro-
ductive ecosystems due to the unique habitat they provide,
which is essential to our ecological structure, and their abil-
ity to act as sinks for organic and inorganic sediment. Salt
marshes have long attracted human settlement and exploita-
tion due to their location along the coast, on the sheltered
shores typical of estuaries and tidal inlets. The permanent
loss of saltmarsh ecosystems is between 25 and 50 percent
of their global historical coverage, and the decline contin-
ues globally. This is exacerbated by rising temperatures, sea
level rise, and increasing storm intensity, which erode salt
marshes. Since 1945, roughly 15 percent of saltmarsh area in
the United Kingdom has been lost due to human intervention,
primarily agricultural and industrial reclamation, and is now
being exacerbated by coastal erosion and sea level rise. Salt-
marsh formation and development are influenced by the in-
terdependence of physical and biological processes, whereas
vertical growth and saltmarsh stability are highly dependent
on sediment supply and tidal range. However, the cumula-
tive impact of human disturbance and sea level rise on the
fundamental saltmarsh dynamics remains unclear and must
be better understood at both the local and global scales.

This thesis aimed to improve understanding of the pro-
cesses, mechanisms and patterns that 1) favour saltmarsh
formation and development 2) enable saltmarsh capacity to
recover from environment and anthropological disturbances
3) promote some of the regulating and supporting services
salt marshes provide. My thesis has carried out a biogeo-
morphological appraisal of the first salt marsh managed re-
alignment in Scotland since its breaching in 2003 in compar-
ison with two adjacent natural salt marshes across different

time scales. The study has employed a methodology to as-
sess jointly managed/anthropogenically modified and natu-
ral salt marshes at different temporal scales. A set of man-
aged and adjacent natural salt marshes within the same salt
marsh system at Nigg Bay, NE Scotland provided a com-
parative case study of the links between sediment availabil-
ity, vegetation presence and saltmarsh stability over time and
space. Above ground changes in vegetation and sedimenta-
tion patterns were quantified over different timescales from
short (annual) to longer (centennial) timescale using a com-
bination of field measurements: sediment deposition, sedi-
mentation plates and DEM time series in tandem with veg-
etation sampling. This multi-method approach has proven
to be a powerful tool to analyse spatial distribution patterns
of sediment accretion. Below ground physical and biologi-
cal changes were explored using a combination of traditional
sedimentary techniques and applying Luminescence to salt
marsh, to gain knowledge on the possible mechanisms driv-
ing these changes. These results were used to assess the po-
tential implications on the supporting and regulating benefits
that salt marshes provide, as such contributing to saltmarsh
blue carbon inventories for natural and managed realignment
salt marsh in Scotland; and, on capacity of marshes to keep
up with rising sea levels.

The cumulative results of my thesis work highlight that
natural salt marshes have limited space to respond to envi-
ronmental changes, which reduces their long-term resiliency.
In terms of sea level rise, the marsh is responding due to the
accommodation space provided by the managed realignment.

Furthermore, the study has developed a new application
of Optically Stimulated Luminescence (OSL) that challenges
the results of conventional techniques and allows exploration
of modern sediment material registering the impacts of re-
cent climate change. This work thus adds an important
dataset to the Scottish context and more broadly to the grow-
ing literature on the ability for managed realignment sites to
replicate natural saltmarsh functions and thus ecosystem ser-
vices.

A PDF of this thesis can be downloaded from: http:

//theses.gla.ac.uk/id/eprint/83810
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This thesis aims to address fundamental questions about
developments and applications in luminescence dating in the
past, present, and future, including the age range, accuracy,
and thermochronological studies.

To estimate the equivalent dose (De) of calcite, a
single-aliquot regenerative-dose (SAR) protocol with low-
temperature measurements is employed. It uses the isother-
mal thermoluminescence (ITL) signals measured at ~ 225 –
240 °C, where a De vs. ITL temperature (De-T) plateau is
observed. These ITL signals correspond to the TL signals of
the 280 °C TL peak. Notably, ITL signals at 230 – 235 °C sat-
urate at ~ 4000 – 5000 Gy, which has the potential to date ge-
ological and archaeological samples spanning the entire Qua-
ternary period. The absence of detectable anomalous fading
of ITL signals suggests that the signal is free of fading. Dose
recovery tests further confirm the suitability of the SAR-ITL
protocol for De estimation.

The SAR-ITL protocol was then employed to study the
thermochronological applications of limestone rocks in the
middle of the Nujiang River, southeastern Tibetan Plateau.
The results show that apparent De values of ITL230 signals in-
crease with increasing heights, while apparent ages increase
before approximately 400 ka (the apparent age) and then
reach dynamic equilibrium stages. From the isochron plot of
apparent De values against dose rates, the effect lifetimes of
ITL signals were obtained, which constrains the applicable
ranges of ITL signals from calcite. It is proposed that cal-
cite can be used in thermochronology within the applicable
ranges from 530 ± 25 ka to the present.

The accurate luminescence dating of volcanic-related ma-
terials remains challenging. This study focuses on quartz
minerals extracted from lava-baked sediments in the Teng-
chong volcanic field, southeastern the Tibetan Plateau, using
the optically stimulated luminescence (OSL) technique. The
results show that samples with initial OSL signals dominated
by the fast component yield reliable ages. Conversely, sam-
ples dominated by unstable medium and slow components
broadly underestimate their OSL ages, requiring corrections.
By using the plot of De against recuperation for each aliquot,
the underestimated OSL ages can be corrected. The final
single-aliquot quartz OSL ages are consistent with single-
grain quartz OSL and 14C ages recording the same eruption
event, thus validating the reliability of the dating ages.

The comprehensive research on photoluminescence (PL)
emission spectra of various feldspar types remains poorly un-
derstood and the limited availability of instruments has hin-
dered its research. This study investigated the PL properties

of six feldspar types using a commercial Raman instrument.
The results indicate that the number and medium positions
of emission peaks depend on the specific feldspar types and
samples analyzed. Additionally, the sensitivity of PL signals
to irradiation dose varies across feldspar types and peak po-
sitions. Notably, PL emissions from ~ 865 and ~ 910 nm of
K-feldspar are sensitive and show potential applicability for
dating applications. The dose-response curves obtained us-
ing 860 – 870 nm PL signals of potassium feldspar conform
to a relationship of a single saturating exponential function
between the signal and irradiation dose. This study demon-
strates that a commonly available Raman system can be uti-
lized for PL measurements of single grains.

15
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Conference Announcements: 15th New World Luminescence 
Dating Workshop (NWLDW) 

 
 
 
We are excited to announce that registration and abstract submission is now open for the 15th 
New World Luminescence Dating Workshop (NWLDW) which is being held from June 
11-14, 2024 at the Desert Research Institute (DRI) in Reno, NV! The abstract and 
registration deadlines are April 12th, 2024 and May 11th, 2024, respectively. This 
workshop serves as a forum for luminescence practitioners to share their findings with the 
broader scientific community, and provides a friendly, inclusive venue for students to meet 
and interact with experts in the field. 
 
Registration is $100 for professionals and free for students presenting an oral or poster 
presentation, courtesy of the Roxie and Joseph Azad Foundation. Registration for non-
presenting students is at a discounted rate of $50. Our (optional) conference dinner will be 
held on the evening of June 12th, 2024 at the Wild River Grille in downtown Reno. The cost 
of the conference dinner is $50 for professionals, $30 for student non-presenters, and free for 
student presenters.  
 
To register and submit your abstract, please visit the NWLDW 2024 website. Additional 
information including a preliminary meeting and field trip schedule can also be found on the 
NWLDW 2024 website.  
  
Hotel rooms fill up quickly in the summer months, so we strongly suggest securing 
accommodation as soon as possible if you plan to attend the workshop. In Reno, we 
recommend two hotels that are both located conveniently in the downtown core of the city 
and are within walking distance of our conference dinner venue: 

• Whitney Peak Hotel 
• Renaissance Hotel 

 
There are a limited number of openings available for the field trip (max number of 
participants is 30), so please register early to secure your spot! For those planning to attend 
the field trip, we encourage you to secure accommodation in Tahoe City, California as soon 
as possible. We recommend Granlibakken Tahoe, but there are several other options in the 
Tahoe City area.  
  
Please get in touch with us at drill@dri.edu if you have any questions. Looking forward to 
seeing you there! 

Best, 
Kathleen, Christina, and Amanda 
 

https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.dri.edu%2Flabs%2Fdrill-nwldw24%2F&data=05%7C02%7CDEWITTR%40ECU.EDU%7C49f8725a98b94d46f7a608dbfd928b3a%7C17143cbb385c4c45a36ac65b72e3eae8%7C0%7C0%7C638382578074954697%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=fXod3oHzy%2F%2F6tw63ZmUTVuxk2kct%2FR9D%2FDar9AUVvtE%3D&reserved=0
https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.whitneypeakhotel.com%2F&data=05%7C02%7CDEWITTR%40ECU.EDU%7C49f8725a98b94d46f7a608dbfd928b3a%7C17143cbb385c4c45a36ac65b72e3eae8%7C0%7C0%7C638382578075110910%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=DkQ5ddFBkhCko9SEpVebXm9%2BKf0wbGdA34em68s7C6M%3D&reserved=0
https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.marriott.com%2Fen-us%2Fhotels%2Frnobr-renaissance-reno-downtown-hotel-and-spa%2Foverview%2F%3Fscid%3Df2ae0541-1279-4f24-b197-a979c79310b0&data=05%7C02%7CDEWITTR%40ECU.EDU%7C49f8725a98b94d46f7a608dbfd928b3a%7C17143cbb385c4c45a36ac65b72e3eae8%7C0%7C0%7C638382578075110910%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=eCDG1H7dM4yD6FztkjGF7Zb7ozR8mFAU8PWlRlEeXGM%3D&reserved=0
https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.granlibakken.com%2F&data=05%7C02%7CDEWITTR%40ECU.EDU%7C49f8725a98b94d46f7a608dbfd928b3a%7C17143cbb385c4c45a36ac65b72e3eae8%7C0%7C0%7C638382578075110910%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=sJ94MptqlPEIDcjdctzQU%2B4NQ6Ee8vU1amV85oHry2I%3D&reserved=0
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