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Abstract

Deviations from anticipated instrumental read-
ings in luminescence measurements can result
in systematic uncertainties that are challenging
to quantify. In this study, we address the
issue of count rate linearity of photomultiplier
modules commonly employed in luminescence
readers. Considering instrumental thresholds
and typical signal outputs, in most scenarios,
this deviation is not a concern. However, in
corner cases where detectors are operated
in regions where non-linearity of count rates
becomes significant, corrections are necessary.
This is a well-known issue, but to the best of
our knowledge, not all measurement systems
utilise a correction. In this note, we provide
some technical background and show that the
impact on the equivalent dose can reach easily
2 % even in conservative scenarios. We then
demonstrate how this can be post-corrected us-
ing a straightforward dead-time non-linearity
correction implemented in the R package

‘Luminescence’.

Keywords: Luminescence, Signal detec-
tion, Dead-time linearity correction, Systematic
uncertainty

1. Introduction

Shortly after Dirk started his PhD in Heidelberg, we en-
gaged in a discussion over managing light output to avoid the
photomultiplier tube (PMT) operating within its non-linear
response range. The cardinal rule tells us, as it is with every
technical component, that it should be operated well within

specified performance limits. In our case, the PMT had doc-
umented linear response characteristics up to 6 x 10° ctss™!
but was cut-off by the reader at 3.5 x 10° ctss~!. This ap-
peared to be a pretty conservative safety margin, still, should
we be worried? In the PMT datasheet, we found count lin-
earity defined as the value at which “/... ] 10 % count loss”
is still acceptable (Hamamatsu, 2008b). Luminescence dat-
ing practitioners may not call it linear if those very count
values are used for equivalent dose (D.) calculation.

Dirk then pointed out that count value underestimation
can easily reach ~ 2 % in case of ~ 100,000 counts per chan-
nel, for a resolution of 0.1 s per channel (e.g. 1 x 10% ctss™!).
Although such a count rate is likely perceived as a suffi-
ciently bright signal by most practitioners, not causing sleep-
less nights, the difference did not seem negligible enough
to be discarded. Hence, we used the correction formula al-
ready implemented in the R (R Core Team, 2025) package
‘0OSLdecomposition’ (Mittelstrali et al., 2022) and simu-
lated corrected PMT response for counting modules typically
encountered in our luminescence readers. The results (Fig. 1)
and their potential implications for luminescence measure-
ments got our attention.

The count value underestimation reaches 7.5 % at a count-
rate of 1 x 10° ctss~! for the Hamamatsu H7421-50, which
is usually preferred for infrared-radiofluorescence (IR-RF)
measurements. Even the UV-blue sensitive PMTs commonly
used for OSL and TL dating exhibit a 1.8 % and 2.6 % under-
estimation at the same count-rate. Of course, PMT signal
dead-time correction is not a new issue. For instance, the
Risg OSL/TL reader manual dedicates an entire chapter to it
and describes a correction procedure (see Ch. 5 in Risg DTU,
2021). In the BINX-file, the logical parameter DTENABLED
would indicate whether a correction was used.

However, how does non-linearity of counts translate, if
this were to be the aim of a measurement, to an equivalent
dose (D.)? Should we correct the signals or does the correc-
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Figure 1: Examples for dead-time non-linearity corrected
photon counts of different PMT models commonly installed
in the luminescence readers. The cut-off shown by the ver-
tical line was chosen arbitrarily to provide a reference for
comparison. The A values show the expected deviation be-
tween measured and corrected value at the reference level.

tion introduce additional problems?

These questions are quite general and part of ongoing en-
deavours in our community to determine the origin, mag-
nitude, and statistical significance of all kinds of measure-
ment uncertainties (e.g., Galbraith, 2002; Duller, 2007; Li,
2007; Adamiec et al., 2012; Kreutzer et al., 2013; Zink, 2015;
Bluszcz et al., 2015; Carter et al., 2018; Guérin et al., 2021).
This is cumbersome and tedious work but often enough
worth the effort if systematic uncertainties can be reduced
or at least correctly expressed.

To fast forward, our discussion ended with adding
a new function called correct_PMTLinearity() to
‘Luminescence’ (Kreutzer et al., 2025) available with
v1.1.1 (2025-09-11). In this contribution, we provide the
technical background and discuss the potential impact on
equivalent dose estimates. The succinct version for impa-
tient readers: signal correction is likely to have an effect, but
accurately quantifying its impact is challenging due to the
number of involved parameters.

2. Technical background

In a PMT module, incoming light produces free electrons
via the photoelectric effect. These electrons are then mul-
tiplied in a multi-staged high voltage field. If the PMT op-
erates in photon-counting mode, these electron avalanches
form current pulses that can be digitally counted. The num-
ber of counts is determined by the flux of photons with ener-
gies within the wavelength detection range of the PMT. The
lower limit of the count rate is defined by the dark current,
which represents an unavoidable signal background even in
the absence of light input. It is caused by a thermally in-
duced leakage current in the photocathode. The upper limit
is reached when the system stops to differentiate individual

pulses due to a high photon flux. This can result in either no
output (paralysed mode) or in temporal or lasting blinding
of the PMT (non-paralysed mode). The extent of the lin-
ear range depends on various factors, of which the pulse-pair
resolution is the dominating one. The pulse-pair resolution
is typically expressed in nanoseconds (1077 s) and represents
the shortest possible time span at which the system can dis-
tinguish individual pulses. If two pulses occur within this
time span, the PMT will return only one count, thus underes-
timating the photon flux. The time span given by the pulse-
pair resolution is also called detector dead-time.

As long as the count rate stays within the range of linear-
ity, photon flux underestimation due to detector dead-times
can be corrected using the formula

M
T 1-Mx

where N (s—1) is the true count rate, M (s~!) the mea-
sured count rate, and k (10~ s) the pulse-pair resolution, re-
spectively, the detector dead-time. For more details, we refer
to the freely accessible photomultiplier handbook by Hama-
matsu (Hamamatsu Photonics K.K., 2017), from which we
drew also most of the technical background above.

This is all but news and frequently encountered statements
regarding the count linearity of particular PMTs often in-
clude dead-time correction. However, it does not imply that
this correction is automatically applied. For instance, the
Freiberg Instruments lexsyg systems (Richter et al., 2025) do
not automatically correct for PMT dead-time non-linearity
but use detector overload thresholds that can be defined in
the firmware settings' individually for each detector. The
obvious idea is to avoid non-linear counting altogether or at
least limit the effects. Nevertheless, depending on the PMT
module operated at the margins of those limits, a correction
might still be worth looking into it.

In Table 1 we list the PMTs most found in the systems
operated in our community. The ET Q9235QB is a standard
option available in, e.g., Risg (Bgtter-Jensen, 1997), lexsyg
(Richter et al., 2025), Daybreak (Bortolot, 2000), and the
LFO02 (Baly et al., 2023) systems. The other detectors are ei-
ther of newer design (e.g., ET PDM9107 series) or have dif-
ferent detection wavelengths for the red or infra-red range,
and are probably less commonly installed in readers. Ex-
cept for the ET Q9235QB PMT, pulse-pair-resolution data
required for the linearity correction are part of the technical
information provided along with the modules by the manu-
facturers. For the ET Q9235QB, it depends on the chosen
housing, respectively the counting module, which may dif-
fer. Therefore, for this model we have quoted an assumed
value. The linear detection range and x vary between de-
tectors causing different linearity corrections as exhibited in
Fig. 1.

If we were to compare only single luminescence signals,
such as two quartz thermoluminescence (TL) curves, disre-
garding other effects, the correction according to Eq. 1 is

N

ey

ILine in the XML settings file:
<cFIParameter Name="DetectorSelectorOverloadSettings" ...
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Table 1: Specifications of selected photon-counting modules typically used in the luminescence-dating community.

Model Detection Manufacturer 10 % count Pulse-pair Reference

window loss resolution

[nm] [s'] [ns]
ET Q9235QB® 290-630 ET Enterprises > 10 x 106@ ~25 ET Enterprise Ltd (2010)
PDM9107-AP-TTL 280-630 ET Enterprises ~ 3 x 1060 25 ET Enterprise Ltd (2017)
PDM9107-USB
H7421-40© 320-720 Hamamatsu Photonics ~ ~ 1.5x10° 70 Hamamatsu (2008b)
H7421-50©) 380-890 Hamamatsu Photonics ~ ~ 1.5x10° 70 Hamamatsu (2008b)
H7360-02@ 300-650 Hamamatsu Photonics ~ 6x10° 18 Hamamatsu (2008a)

@ Characteristics may differ with attached housing and counting module.
® After dead-time correction up to 100 x 10°s~!

(©) Model discontinued 12/2024, new series with comparable properties: H16721 (Hamamatsu, 2025)
@ Model discontinued, suitable replacement with equal properties as above: H11870

straightforward, and the effect as shown in Fig. 1 is correctly
quantified. However, typical measurement protocols used
for D, determination, such as the single-aliquot-regenerated
(SAR) dose protocol (Murray and Wintle, 2000), involve
more steps, and the physics of luminescence production (e.g.,
Bailey, 2001) does not provide a direct path to quantify the
impact on the results. In other words, while Fig. 1 makes a
compelling case, it is overly simplified because the effects in
the D, cannot be derived from single count values alone.

3. Simulation of equivalent dose impact

To simulate the ratio of D, values determined with uncor-
rected and corrected signals, we simulated a SAR sequence
using the R package ‘RLumModel’ (v0.2.11) (Friedrich
et al.,, 2016) and the Bailey (2001) quartz model. With
an assumed dose rate of 1Gy s~! for the irradiation source,
we added regeneration dose points up to 1,000Gy for each
experiment to ensure a similar dose-response curve (DRC)
shape. The unusual size of the dose rate (compared to typ-
ical 0.1Gys™! in built-in irradiation sources) does not af-
fect the outcome of our experiment. We then modified the
given dose to be recovered to move theoretical points along
the set of DRCs. The D, was derived from DRCs obtained
for dead-time non-linearity-corrected and uncorrected shine-
down curves. For the correction, we used a k of 18ns as the
lowest value in Table 1. To simulate different light levels, we
used a factor (0.0001,0.0002,. ..,0.001) to reduce the inten-
sity of the shine-down curves. This was less challenging than
modifying the Bailey-model to obtain realistic magnitudes
of count values as typically measured with PMT modules.
However, it resulted in non-meaningful dark-count values as
such simulation is typically not part of the model implemen-
tation. The latter was still acceptable because the modelling
output using differential equations does not include stochas-
tic uncertainties (see discussion in Pagonis et al., 2020). With
that being said, the chosen settings (light level and k) are not
entirely arbitrary but best align with the Hamamatsu H7360-
02 PMT operated in most of our lexsyg readers here in Hei-
delberg.

Our modelling sequence was defined with the following

parameters:

sequence <- list(
RegDose = <dose_points>,
TestDose = 25,
PH = 220, #preheat
CH = 220, #cutheat
OSL_temp = 125, #read temp.
Irr_2recover = <given_dose>,
0OSL_duration = 70)

This sequence was then used by ‘RLumModel’ to simu-
late the corresponding DRC:

RLumModel: :model_LuminescenceSignals(
sequence = sequence,
simulate_sample_history = TRUE,
model = "Bailey2001",
lab.dose_rate = 1,

2

The full R script used for our simulation is attached as
a supplement for detailed inspection. For this manuscript,
Fig. 2 suffices and illustrates the basic concept of our simu-
lation. For simplicity, we show only shine-down curves for
one intensity setting, while the script produces a set of curves
for each SAR sequence using different intensities for each
particular dose to recover.

Figure 3 shows the output of our simulation. The primary
x-axis and y-axis refer to the plotted but arbitrary values,
while the secondary axes provide the conversion to physi-
cally meaningful quantities. For the x-axis, these are Gy and
for the y-axis absolute signal intensity. This seems to contra-
dict the given dose (primary x-axis), but indeed, with dose,
the Bailey (2001) model-based simulated SAR protocol in-
creasingly fails to recover the given dose; a model property
unrelated to the applied dead-time correction. A similar pat-
tern can be found for other quartz luminescence models that
are included in ‘RLumModel’.

The colours in the heatmap encode the obtained ratio of
the corrected and uncorrected D, values. The white solid
contour lines provide guidance to better connect colours with
the scales on the axes. For ratios > 1 the D, derived from
corrected shine-down curves is higher. For ratios < 1 the
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Figure 2: Typical simulated shine-down curves for Ly (A) and 75 (B) and the corresponding dose-response curve (C). In (C) we
added the different L, /T;, points for which different D, values can be calculated either for the uncorrected signals (solid black
line) or the DRC based on dead-time non-linearity corrected shine-down curves (dashed blue line). More details see main text.

corrected D, i1s lower, which is the case for most simulated
scenarios. This is because the correction of the shine-down
curves causes less curvature of the DRC and the correspond-
ing corrected D, derived from such curves yields smaller val-
ues.

In our example, the calculated ratios between D, values
obtained with and D, values obtained without correction,
range from 0.92 to 1.01 in corner cases. Realistically, the
difference between D, values derived from uncorrected sig-
nals to D, values based on dead-time non-linearity corrected
signals will ballpark 1-2 %. For approximation, we assume
that most quartz D, values will be lower than 200Gy in dat-
ing scenarios. Please note that ratios in Fig. 3 and as they
may appear in Fig. 2 are not comparable, because the hy-
pothetical DRC added as a dashed blue line in Fig. 2 would
only exist for one scenario of a dose to be recovered.

During a SAR measurement, as simulated here, the light
output can decrease or increase depending on the regen-
eration dose, preheat/cutheat temperatures, and sensitivity
changes; all related to the process of luminescence produc-
tion. SAR protocol tests, e.g., dose-recovery tests, and test
dose measurements during the sequence should account and
correct for this, given that light output readings are reliable
and not affected by instrumental changes that are not part of
underlying luminescence physics. Unfortunately, the number
of parameters we can modify for this model and simulation
alone is huge and the number of possible scenarios nearly
infinite. Hence, the simulation demonstrates that instrumen-
tal aspects are better taken care of to avoid hard-to-quantify
systematic uncertainties later.

4. When and how to apply linearity correction?

The simulation suggests small but non-negligible D, over-
estimations, if samples with high signal yield are evaluated
without PMT-linearity corrections. However, at what count
values should we start to worry and look for a solution?

A simple marker is the first channel of the first OSL mea-
surement (e.g., L, in the SAR protocol). This data point
is typically the one with the highest impact on the obtained
D.. In Table 2 we provide rule-of-thumb values to make an
assessment of the situation. We calculated at which count
value the count underestimation exceeds 1% depending on
the channel width and the employed PMT.

In cases, where non-linearity seems to become a concern,
we have identified three possible solutions that can be ap-
plied; in parts combined.

1. Monitor and manage light output: The most effective
method to prevent any potential issues is to adhere to
the most straightforward principle: avoid operating de-
tectors close to or beyond their specified count linearity.
This can be achieved through various means, includ-
ing increasing the detector to sample distance, reduc-
ing the stimulation intensity while prolonging the stim-
ulation duration, or employing the most straightforward
approach of adding neutral density filters. These filters
can be as simple as home-made pin-hole filters. Alter-
ing the aliquot size for the sake of lower light output
should be avoided, though.

2. Record dead-time profiles: The second-most effective
solution appears to be the one outlined in the Risg hand-
book: Record a linearity profile (Risg DTU, 2021). If
this is supported by the manufacturer, it gives complete
control and establishes a distinct threshold above which
signals should be discarded.

3. Post-correction: Once the signal has been recorded
but a linearity profile has not been established for the
detector, post-processing using the linearity correction
routine becomes appropriate. In the ‘Luminescence’
package, we have integrated the function
correct_PMTLinearity() as part of this contribu-
tion. The user can provide RLum.Analysis-class or
RLum.Data.Curve-class objects as input, specify the
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Figure 3: Simulated effect of signal strength and given dose on the difference of equivalent doses between the uncorrected
and corrected signal. The secondary x and y-axes provide supplementary information on the recovered dose (x-axis) using
the simulation for a specific given dose, and the expected absolute count value (y-axis), for which the unit can be assumed as
ctss~!. Please note that the numerical values depend on the model parameters of the simulation, and the graph serves solely as
an indication of the anticipated impact. For further details, we refer to the main text.

Table 2: Counts per channel (CH) with an estimated difference of 1 % between measured and corrected value.

Pulse-pair- CH=0.05s CH=0.1s CH=02s CH=05s CH=1s PMT examples

resolution

18 ns 27778 55556 111 111 277778 555556 H7360/H11870 series

25 ns 20 000 40 000 80 000 200 000 400 000 ET Q9235QB,
PDM9107-APTTL series

70 ns 7 143 14 286 28 571 71429 142 857 H7421/H16721 series

count-pair resolution, and then correction is performed
automatically. If the input is an .xsyg file produced
by a lexsyg reader, a new argument available through
import_Data(..., auto_linearity_correction
= TRUE) (through read_XSYG2R()) will attempt an
automatic correction using count-pair resolution values
for known detectors. However, while convenient, the
automatic correction remains patchy, as not all versions
of LexStudio2 (the operating software for lexsyg
readers) return information on the detector. In such
cases, the manual call on correct_PMTLinearity ()
is the more reliable approach.

Solution 1 can be combined with either solution 2 or so-
lution 3. In cases were dead-time profiles were established,
no post-procession correction (solution 3) must be applied.

Finally, it should be noted that any solution relies on the
non-paralysed operation mode of the PMT. If the PMT be-
comes dark in response to temporal overloads, the dead-time
non-linearity correction will not be effective. On the other
hand, a post-correction might be beneficial even in cases

where only a fractional non-linearity might be expected to
avoid systematic deviations and errors.

5. Conclusion and outlook

We discussed the well-known issue of non-linear counting
of PMT modules commonly utilized for measuring lumines-
cence. Our attempt to quantify the impact on the equivalent
dose in SAR measurements would estimate a systematic un-
certainty of up to 2% for quartz OSL measurements even
when using PMTs with a high pulse-pair resolution of 18ns.

We propose managing the light output to mitigate
such effects or recording linearity profiles.  Alterna-
tively, if this approach is not feasible, we suggest post-
correcting luminescence signals using the new function
correct_PMTLinearity() added to ‘Luminescence’.

Our results are based on simulations with the objective
of ensuring reproducibility and adaptation by others. Future
work may necessitate re-analysing previously measured data
to quantify the effect on the age and chronological inference
for luminescence dating measurements.
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Abstract

This study investigates the potential short-term
fading of radiation-induced Electron Spin
Resonance (ESR) signals in quartz grains
following gamma-irradiation, a critical issue
for the optimization of Single Aliquot (SA)
measurement protocols. Through a signal
stability experiment carried out on two quartz
samples, we evaluated the evolution of the
Al and Ti ESR signal intensities over 2 to 8
months after gamma irradiation. Our re-
sults indicate that the variation of the ESR
intensities remains within typical experimental
uncertainties, although data might also suggest
a potential trend during the first day after irra-
diation. This trend is, however, non-systematic
and could be sample- and signal-dependent,
if not directly related to the stability of the
experimental setup. Regardless, for precaution
we may nevertheless recommend waiting for 1
day after gamma-irradiation before carrying
out the ESR measurements. Importantly, this
finding implies that ESR measurements of
quartz samples can be performed relatively
soon after gamma-irradiation, enabling the

implementation of more time-efficient SAR
protocols for ESR dating applications.

Keywords:
MAAD, SAR

Fading, ESR signal, Quartz,

1. Introduction

Most Multiple Centre Electron Spin Resonance (MC-
ESR) dating studies based on sedimentary quartz grains
typically use the standard Multiple Aliquot Additive Dose
(MAAD) method for dose determination (e.g. Ben Arous
et al., 2025, 2024b; Duval et al., 2017; Liu et al., 2010;
Voinchet et al., 2020; Yokoyama et al., 1985). More con-
venient in many aspects than Single Aliquot (SA) proce-
dures, especially when direct access to an irradiation source
may be complicated, the MAAD method has demonstrably
proven its reliability to constrain the chronology of Qua-
ternary deposits in Europe, Asia, and Africa, providing re-
sults in good agreement with independent age control (e.g.,
Bartz et al., 2018, 2019; Ben Arous et al., 2024b, 2025;
Duval et al., 2022; Voinchet et al., 2020). However, one
may reasonably argue that ESR dose evaluations involving
Single Aliquot and/or Regeneration procedures (e.g., SAR,
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SAAD, MAR) show indisputable advantages compared to
the MAAD method. For example, SA measurements re-
quire a significantly smaller amount of prepared material,
which may be critical in quartz-poor deposits. In combina-
tion with Regeneration (SAR), it also involves significantly
less irradiation dose steps, significantly reducing irradiation
and measurement times. Typically, only 3—4 dose points may
be needed for the dose response curve, compared to 10—12
dose points usually measured for the MAAD. Moreover, the
dose evaluation based on SAR or MAR methods intrinsically
offers a smaller fitting uncertainty, since the D, is obtained
by interpolation instead of back extrapolation. This is why
the SAR has become an increasingly popular method in ESR
dating over the last decade (e.g., Tsukamoto et al., 2015).

Time constraint being the essence of any experimental
work, one of the main issues with regenerative dose measure-
ment procedures is to properly evaluate whether any tran-
sient (short-lived) ESR signal induced by the irradiation may
potentially interfere with the main radiation-induced ESR
signals being measured for dating purposes. Such evalu-
ation is crucial in order to determine the appropriate wait-
ing time needed between the irradiation and subsequent ESR
measurement. However, unlike for tooth enamel (e.g., Hoff-
mann and Mangini, 2002; IAEA, 2002; Nilsson et al., 2001;
Sholom and Chumak, 2008), the possible presence of tran-
sient radiation-induced ESR signals in quartz grains remains
virtually unknown to our knowledge.

Regardless of the above, two main conservative strate-
gies have been traditionally adopted in ESR dating of quartz
to mitigate the potential impact of transient signals on dose
evaluation: (i) either a prolonged storage (which can vary
from a few days to a few months depending on the material
or laboratory involved) of the sample at room temperature
(e.g. Fattibene and Callens, 2010), (ii) a post-irradiation an-
nealing at a given temperature, regarded as sufficient to elim-
inate the temporary signals without affecting the radiation-
induced signal of interest. This first one is usually favoured
in dating application studies based on the MAAD method,
and a minimum storage of a few weeks (the exact duration
is very rarely reported) is commonly considered for extra
precaution (e.g. Niu et al., 2022), although there is currently
no published evidence that could possibly confirm, or invali-
date, the need of such procedure. The second is usually pre-
ferred for SAR protocol measurement based on quartz (e.g.
Tsukamoto et al., 2015). In simplified terms, to determine
the equivalent dose with the SAR protocol, the natural ESR
signal of a single aliquot is first measured after preheating at
a specific temperature (typically between 120 °C and 280 °C
for 2min). This is followed by a high-temperature anneal-
ing step (420 °C for 2 min), irradiation with an X-ray source
(given dose), another preheating step, and finally measure-
ment of the regenerated ESR signal from the same aliquot.
The ESR-SAR protocol offers the major advantage of saving
considerable time, as it allows the quartz sample to be mea-
sured just a few minutes after irradiation and heating, unlike
the MAAD protocol, where all irradiations are performed in
a separate facility using a high dose rate source.

Consequently, the present study aims to evaluate the pos-
sible presence of transient radiation-induced ESR signals
generated by gamma-irradiation, through a short-term sta-
bility experiment involving two quartz samples repeatedly
measured over 2 and 8 months after irradiation. Such ex-
periment is also crucial for the future implementation of the
SAR protocol using gamma-irradiation sources.

2. Materials and methods

Two prepared quartz samples (100-200 um grain size),
OUC1102 and BGO03-06, were selected for our experiment
carried out at CENIEH (Spain). OUC1102 is a modern sam-
ple originating from the river bank of Oued Charef, Morocco
(Ben Arous et al., 2024a; Sala-Ramos et al., 2022). BGO03-
06 was collected from the Middle Stone Age of Bargny 3
in Senegal (Ben Arous et al., 2024b). One natural aliquot
of each sample (OUC1102: 304.6 mg; BG03-06: 150.9 mg)
was irradiated with a Gammacell-1000 '¥7Cs gamma-source
(OUC1102: 1327 Gy; BG03-06: 1000Gy) and then mea-
sured by ESR. Low temperature (90-92 K) ESR measure-
ments were performed with an EMXmicro 6/1Bruker X-
band ESR spectrometer coupled to a standard rectangular
ER 4102ST cavity and using an ER4141VT digital temper-
ature control unit. To ensure constant experimental con-
ditions over time, the temperature of the water circulating
in the magnet was controlled and stabilized at 18°C by a
water-cooled Thermo Scientific NESLAB ThermoFlex 3500
chiller, and the temperature of the room was kept constant at
20°C by an air conditioning unit. Further details about the
setup and its stability over time can be found in Duval and
Guilarte Moreno (2012) and Guilarte and Duval (2020).

The ESR signals of both the Al and Ti centres were mea-
sured separately using the following acquisition parameters:

e Al centre: 10 mW microwave power, 1024 points res-
olution, 20 mT sweep width, 100 kHz modulation fre-
quency, 0.1 mT modulation amplitude, 40 ms conver-
sion time, 10 ms time constant and 1 scan.

e Ti centres: 5mW microwave power, 1024 points res-
olution, 20 mT sweep width, 100 kHz modulation fre-
quency, 0.1 mT modulation amplitude, 60 ms conver-
sion time, 10 ms time constant and 1 to 3 scans.

Each aliquot of a given sample was measured 3 times af-
ter a ~ 120 ° rotation in the cavity for both Al and Ti signals
in order to consider angular dependence of the signal due to
sample heterogeneity, and a mean value and an associated
standard deviation were derived. Another quartz sample was
used as a standard and measured immediately before and af-
ter the aliquots to evaluate the stability of the experimental
conditions over time. Repeated ESR measurements of each
aliquot together with the standard were carried out over a pe-
riod of 8 months after after gamma-irradiation for OUC1102,
and over 2 months for BG03-06.

The ESR intensity of the Al signal was extracted from
peak-to-peak amplitude measurements between the top of the
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first peak and the bottom of the last peak in the domain rang-
ing from g = 2.0185 to g = 1.9928 (Toyoda and Falgueres,
2003). The ESR intensity of the Ti centres was evaluated by
peak-to-baseline amplitude measurement around g = 1.913
to g = 1.915 (i.e., options C and D sensu Duval and Guilarte,
2015). All ESR intensities were corrected for the slight vari-
ations of temperature (up to ~ 0.2 K) following Duval and
Guilarte Moreno (2012), and of the overall stability of the
experimental setup using the values from the quartz standard
as a reference.

3. Results

The results obtained for the two samples and for each sig-
nal (Al, Ti-H and Ti-mix) are summarised in Table 1 and
Fig. 1, while the numerical data may be found in Supple-
mentary Material Tables S1 and S2.

An apparent trend may be observed in the ESR inten-
sity of the Al signal of OUC1102 during the first 5 hours
(300 min; Fig. 1B), which decreases by about 5 % from 5.57
to 5.30 a.u. Then, the values increase again and oscillate be-
tween 5.34 and 5.67 a.u. (Fig. 1A). In contrast, the Al signal
intensity of BG03-06 first drops by about 4 % from 2.11 to
2.02 a.u., and then shows a slight but constant increase dur-
ing the first 5 hours of about 11 % (from 2.02 to 2.25 a.u.)
(Fig. 1D). This trend seems to disappear after 1 day, and ESR
intensities remain overall constant between 1.96 and 2.14 a.u.
(Fig. 1C).

Unlike the Al signal, the Ti signals measured in OUC1102
do not show any obvious apparent trend during the first 5
hours or beyond (Fig. 1E and F). In contrast, the two Ti sig-
nals of BG03-06 do show a similar notable increase over the
first 5 hours of about 21 % (Ti-H; from 0.23 to 0.28 a.u.) and
18 % (Ti-mix; from 0.33 to 0.39 a.u.) (Fig. 1G and H). Af-
ter 1 day, the ESR intensities seem to show instead a more
random variation (Ti-H : 0.24-0.28 a.u.; Ti-mix: 0.32-0.37
a.u) and no significant trend may be observed. Interestingly,
the evolution of the Al and Ti signals of BG03-06 is similar,
although the overall variability of the Al is lower than that of
the Ti signals.

Despite the variability observed in the Al and Ti signal in-
tensities, both samples show that the mean intensity value re-
mains virtually unchanged regardless of the time range con-
sidered. For OUC1102, the mean ESR intensities of the Al
signal are between 5.51 + 0.10 a.u. (234 days) and 5.44 +
0.09 a.u. (1 day) and remain systematically consistent within
uncertainty (Table 1). Similarly, the mean ESR intensities
of the Ti-H and Ti-mix in that sample remain around 0.19
a.u. and 0.28-0.29 a.u., respectively (Table 1). BGO03-06
also show mean ESR intensities varying within narrow range
between 2.09 £ 0.06 a.u. (64 days) and 2.13 + 0.06 a.u. (21
days), ~0.26-0.27 a.u. and ~ 0.34-0.35 a.u. for the Al, Ti-
H and Ti-mix signals, respectively (Table 1). In other words,
despite the variability observed, no significant difference in
the ESR intensities of the various signals can be observed
2 hours, 1 day, 7 days and 14 days after gamma-irradiation
when compared to the baseline values collected over a longer

10

period (234 days for OUC1102 and 64 days for BG03-06).

This variability most likely originates from the inherent
uncertainty associated with the stability of the experimental
setup (about 1.1 % and 2.8 % for the Al and Ti signals; Du-
val et al., 2024; Duval and Guilarte Moreno, 2012) or with
sample homogeneity, and especially the angular dependence
of the signal. The latter is typically about 1.1 %, 2.0 % and
3.0% for the Al, Ti-mix and T-H signals, although higher
values may also be observed (Duval et al., 2024). Moreover,
the variability is also strongly dependent on the signal-to-
noise (S/N) ratio associated to each signal. For example,
for sample BG03-06 the mean S/N ratio of the Al signal is
about 2.1 and 5.4 times higher than that of the Ti-H and Ti-
mix signals, respectively (Table 1). A similar observation
can be made for sample OUC1102, with the Al signal show-
ing an S/N ratio approximately 5—16 times higher on average
for the various successive measurements (Table 1). Interest-
ingly, with significantly stronger ESR intensities, the Al sig-
nal naturally tends to return a higher measurement precision
compared to the Ti-mix and Ti-H signal (Duval et al., 2024).
The same applies here. For example, at t = 6.89 days after
irradiation, the Al, Ti-mix and Ti-H signal intensities show a
scatter of 1.9 %, 3.1 % and 4.6 %, respectively (Table 1). For
BGO03-06, at t = 7.02 days, this variability is 2.9 % for the Al
signal, while it is 5.3-5.4 % for both Ti signals. Importantly,
these values are similar to those typically reported about the
stability of the experimental setup (Duval et al., 2024; Duval
and Guilarte Moreno, 2012).

Fig. 2 displays the spectra of the Al and Ti signals ac-
quired at measurements #3, #33 and #63 for sample BG03-
06. The Al spectra show little variability, with a slight shift
of less than 1 Gauss (G) in the position of the first peak. A
comparison of the ESR spectra obtained 7 days after gamma-
irradiation with those acquired immediately after irradiation
shows no significant differences for either Al or Ti signals.
The small variations in peak intensity observed for Ti-mix or
Ti-H are mostly attributable to high-frequency background
noise, which is expected given the smaller S/N measured for
these signals compared to Al. It is worth noting that other
studies have reported changes in signal shape between spec-
tra recorded immediately after irradiation and after preheat-
ing (e.g., Prince et al., 2024). However, such effects were
not observed in our experiments, as the samples were not
preheated. A slight difference in peak amplitude was ob-
served, for example around 3500 G and 3525 G, which we
initially attributed to the angular dependence of the signal.
Nevertheless, as highlighted in Fig. 2 for measurement #63,
the Ti-mix (signal D) exhibits a higher ESR intensity around
3525 G, while the Ti-H signal remains unchanged. This sug-
gests that the observed variation is more likely related to the
Ti-Li component rather than to angular dependence alone.
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Figure 1: Evolution of the ESR intensities measured for the Al and Ti (options C and D sensu Duval and Guilarte, 2015) signals
over almost 8§ months (234 days) and 2 months (64 days) for samples OUC1102 and BG03-06, respectively. Left graphs (A, C,
E, G) show the full evolution of the intensities over the full-time range. Right graphs (B, D, F, H) are focused on the first 400
minutes (~ 8 hours) after the irradiation. Graphs A to D show the Al signal, while graphs E to H display the Ti signals. Each
point represents the mean ESR intensity and associated 1 standard deviation (s.d.) from the three measurements performed
after a ~ 120 ° rotation. The mean ESR intensity (in arbitrary units — a.u.) and associated 1 sd over the full time range is also
indicated by solid and dashed lines, respectively. All numerical values may be found in Supplementary Material Tables S1 and
S2.
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Table 1: Mean ESR intensities and associated standard deviation measured for the Al, Ti-H (option C) and Ti-mix (option D) signals for a given duration, i.e., after about 2
hours, 1 day, 2 days, 1 week (7 days), and almost 8 months (234 days) for OUC1102, and after about 2 hours, 1 day, 1 week (7 days), 2 weeks (14 days) and about 2 months
(64 days) for BG03-06. Key: n = measurement number; sd = standard deviation; cv = coefficient of variation. The average S/N (signal-to-noise ratio) has been calculated
by averaging the noise at times 3, 9, 15, 21, 42 for sample OUC1102 and at times 11, 21, 33, 48 and 63 for sample BG03-06. All data, uncorrected and corrected with the
standard are provided in the Supplementary Material.
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Figure 2: Comparison of normalised Al and Ti signals of
sample BG03-06 from measurements #3, #33 and #63. A
baseline correction using a cubic function was applied for
each spectrum.

4. Summary

Our main observations may be summarised as follows:

* No apparent systematic trend in the short-term ESR sig-
nals stability is observed over time: while OUC1102
shows either a slight decrease (Al signal) or remains
somewhat stable (Ti signals) during the first hours after
gamma-irradiation, an intensity increase may instead be
observed for all signals of BG03-06 over that same pe-
riod.

* In other words, the more pronounced trends observed
during the first day after gamma-irradiation are strongly
signal- and sample-dependent. The intensity correc-
tions performed using a standard measured together
with the sample enable minimising the influence of the
relative instability of the experimental setup on the data
set, ensuring that the observed trends primarily reflect
sample-specific behavior.

e Mean ESR intensities remain within error indepen-
dently of the time range considered: over 2 hours, 1
day, 2 days or 7 seven days after gamma irradiation,
the mean ESR intensity is consistent with the baseline
value obtained over several months of measurements.
This simply indicates that the ESR intensities measured
shortly after gamma-irradiation do not significantly dif-
fer from the mean values derived from a longer time
range.
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5. Conclusions

Our results indicate that Al and Ti signals measured in
two quartz samples do not exhibit on average any signifi-
cant change in their intensity shortly (2 hours, 1 day, 2 days
or even 7 days) after gamma-irradiation, suggesting that the
transient radiation-induced signals, if present, have negli-
gible influence on the measured ESR intensities. In other
words, any potential transient signal generated immediately
following the irradiation falls within the intrinsic experimen-
tal uncertainty, which is largely driven by factors such as the
stability of the ESR spectrometer, the inherent heterogeneity
of the quartz sample, or the S/N ratio. While some apparent
trends may be punctually observed during the first 5 hours
or 1 day after gamma-irradiation, they may be sample de-
pendent and are possibly related to the stability of the ESR
spectrometer, although the influence of the latter was tenta-
tively minimised by repeatedly measuring a quartz standard.
For precaution, it may nevertheless be recommended to wait
at least 1 day after gamma-irradiation before performing the
ESR measurements. An extension of the current study could
involve preheating the gamma-irradiated samples followed
by the same set of measurements.

Notably, our observations are consistent with those of
Tsukamoto et al. (2015), who showed that Al and Ti centres
remain stable over time following X-ray irradiation, with no
significant differences between signals regenerated immedi-
ately after irradiation and those measured after one month
of storage. Taken together, their findings and ours support
the conclusion that potential short-lived components have
little to no impact on ESR signal stability. As a corollary,
these results also indicate that there is currently no evidence
of short-term fading of the Al and Ti signals measured in
quartz. As a consequence, this study provides an impor-
tant experimental foundation for the future development and
broader application of time-efficient Single Aliquot Regener-
ative dose (SAR) protocols using gamma-irradiation sources.
Such advancement could significantly streamline the ESR
dating workflow, particularly in contexts where sample quan-
tity is limited or rapid turnaround is required.
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available as Supplementary Material to this article.
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While research into Quaternary environmental changes
has taken place in the Central, Eastern, and southern re-
gions of the Arabian Peninsula (AP) within Saudi Arabia,
little paleoenvironment research has yet to be carried out in
the western part of the AP, this is, even though the western
part of Arabia is uniquely different from the eastern and cen-
tral areas regarding climate and geology. Western Arabia is
also critical in understanding past human migrations from
Africa and the archaeological record of Arabia. To address
the project’s aims in reconstructing Late Quaternary envi-
ronmental changes in wadi activity in the western region of
Saudi Arabia and their relationship to regional environmen-
tal changes on the AP, a multiple methods approach using
luminescence dating of the Wadi sedimentary archive, par-
ticle size analysis, and remote sensing was applied to map,
understand, and model the fluvial drainage network. This
research revealed the occurrence of major wet phases in the
western part of the AP, which are MIS 9, 7, 3, and 1, which
align with wet periods in other areas of the AP. Interestingly,
no wet phase during MIS 5 has been found in the selected
study area, indicating a need for further research.

Remote sensing has assisted in delineating the exten-
sive stream network, which used to be active during in-
tense precipitation during pluvial periods due to the com-
bined climate-wind systems of the Indian Ocean Monsoon
and the North African Summer Monsoon. Regarding palae-
olakes, the research mapped 231 ancient lakes in the Har-
rat region, 93 interdune palaeolakes, and 4806 archaeologi-
cal sites, which themselves suggest that Wadi Trubah had a
favourable climate condition for human settlements.
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The Negro River, the main tributary of the Solimdes,
drains the largest tropical watershed and sustains one of
the most biodiverse ecosystems on the planet. Despite the
well-documented influence of fluvial dynamics on Amazo-
nian landscape evolution, the scarcity of absolute dating
of sedimentary deposits limits the understanding of Qua-
ternary paleohydrological changes. This gap hinders the
chronological reconstruction of the geomorphological pro-
cesses that have shaped the region’s fluvial systems over the
past 250,000 years. This research project aims to recon-
struct the geological evolution of the middle Negro River
during the Late Quaternary (<250ka) through geomorpho-
logical mapping (terrace levels and floodplains), lumines-
cence dating (11 quartz and 4 feldspar samples), and sed-
iment provenance analysis (%BOSL1s). Terraces yielded
ages between 297 ka and 103 ka (quartz) and between 390 ka
and 302ka (feldspar), while floodplains showed younger
ages (31 ka to 2ka). Quartz OSL sensitivity (%BOSLI1s) in-
creased from terraces (20-24 %) to floodplains (36—46 %),
supporting Andean sediment sources with progressive re-
working in floodplains. Three knickzones in the longitudi-
nal profile correlate with lithological transitions (Icd Forma-
tion/Jauaperi Metamorphic Suite) and Pleistocene megafans
that forced southwestward channel migration. Tributaries
(Jad and Unini rivers) exhibited distinct patterns: meander-
ing reaches in less resistant rocks (Icd Formation) alternated
with confined valleys in crystalline units (Jauaperi Suite).
Terrace ages in the Cuiuni (103—-328 ka) suggest that the dis-
connection between the Japurd paleochannels and the Negro
River occurred more than 100ka ago, recalibrating previous
Holocene models. This hydrological reorganization likely
influenced biogeographic patterns, including the Jai-Negro
endemism zone. Our results demonstrate that landscape evo-
lution reflects the interplay of lithological controls, orbital-
scale climate changes, and tectonic factors, providing a new
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chronological framework for understanding Amazonian flu-
vial dynamics and their impacts on biodiversity.

This study was financially supported by the Sdo Paulo
Research Foundation (FAPESP, Grants 2023/10430-4 and
2024/07848-0) and the Coordination for the Improvement
of Higher Education Personnel (CAPES, PROEX Grant
88887.805016/2023-00).

A PDF of this thesis can be downloaded
from: https://doi.org/10.11606/D.44.2025.
tde-09102025-072755
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Over the past three decades, beach ridges adjacent to
the Great Lakes have provided researchers with key sedi-
mentological and geochronological data used to construct
Holocene paleohydrographs, records that reconstruct past
lake levels and show trends in century-to-millennia scale
hydrologic variability. Such paleohydrographs are critical
for understanding changes in regional climate and lake-level
trends. The beach ridges are a well-suited setting for opti-
cally stimulated luminescence (OSL) dating, as they contain
eolian sand over foreshore deposits, both of which are fully
bleached of all luminescence signal prior to deposition. Pre-
vious studies have shown that the beach ridges form during
decadal periods of lake-level rise and fall and that the eleva-
tion of basal foreshore deposits is a close approximation to
the elevation of the lake level at the high stand. These inter-
pretations rely on the model of beach ridge formation where
beach ridges must either form sequentially lakeward or be
eroded.

This study focuses on the record of lake-level fluctua-
tion preserved in a strandplain of beach ridges at the Went-
worth Woods Nature Preserve (WWW) along the southwest-
ern margin of Lake Michigan. OSL ages of the basal fore-
shore deposits should provide an estimate of age for the
lake-level highstand. The basal foreshores from seven beach
ridges were dated via OSL and ranged from 2.6 +0.3ka to
6.2+0.4ka. Due to inconsistencies between the model for
beach ridge formation and the ages determined through OSL
that break this pattern, statistical analysis was pursued. Us-
ing Bayesian modeling of OSL ages across the strandplain,
this study recalculated age ranges for the entire strandplain to
be between 4.9 +0.2ka and 5.2+0.1 ka and reduced report-
ing error from a median of 7 % (356 yrs) to 2% (113 yrs).
Beyond chronologic resolution refinement, this analysis al-
lows for century-scale interpretations of lake-level change
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and suggests that the age of the highest premodern lake-
level, the peak of the Nipissing phase in the Great Lakes,
is revised from its previously reported age of 4.5+0.5ka to
be 5.1+0.1ka. This analysis not only improves the under-
standing of paleohydrology in the Great Lakes basin but also
provides insight into lake-level change as a result of glacial
isostatic and climate change.

A PDF of this thesis can be downloaded
from: https://www.proquest.com/openview/
62c9e771c70b7b887faede7f60bd3337/17
pgq-origsite=gscholar&cbl=18750&diss=y
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Degree: Ph.D.
Supervisors: Prof. David Sanderson and Dr. Alan Cresswell

During all phases following a nuclear or radiological in-
cident analyses of doses received by members of the public
and responders are required. Rapid and reliable dose assess-
ment is critical for the effective management of radiological
emergencies; for medical triage, understanding exposure lev-
els, directing protective actions, and conducting subsequent
analyses of the impact of the incident. Current practice has
been reviewed, highlighting the potential for near real-time
luminescence dosimetry to assist with such assessments, in-
cluding low dose response that supports public reassurance
below doses of medical significance, using common mate-
rials present at the time of the incident. A number of ma-
terials which might be found in the immediate vicinity of
people have previously been investigated with regard to their
potential to act as radiation dosimeters. The work in this
thesis investigates the properties of common household salt
and talc, using portable Optically Stimulated Luminescence
(OSL) and Infra-Red Stimulated Luminescence (IRSL) in-
struments capable of rapid measurements in the field. The
potential of these materials to measure radiation levels and
provide rapid, cost-effective insights into exposure patterns
using new methods is explored. This approach aims to sup-
port emergency response strategies by leveraging accessible
materials to improve decision-making in radiological inci-
dents, bridging a key gap in large-scale radiation measure-
ments and initial triage support.

Common salt has previously been shown to have the po-
tential for retrospective dosimetry in the mGy dose range
using laboratory instrumentation. This thesis investigates
the use of portable instruments, with unprepared commer-
cially sourced salt, in dose ranges below mGy. Responses
from pulsed IRSL laboratory systems and portable OSL in-
struments were compared. For OSL measurements, detec-
tion limits of 7uGy have been demonstrated, with detec-
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tion limits of 30-340 uGy for the other instruments inves-
tigated. This work examines the effects of signal stability
and sample storage conditions. The OSL signals initially
show a brief decrease in luminescence during the first few
days after irradiation, followed by a gradual increase with
longer storage periods. Between days 8 and 64, the results
remain relatively stable, which is crucial for dose estimation
during both the early and later stages of responding to radi-
ological emergencies, and methods for correcting for these
signal variations at shorter and longer periods have been de-
veloped and demonstrated. However, exposure to light and
moisture leads to a rapid loss of OSL signals. Three practi-
cal experiments were conducted using salt to simulate real
accident scenarios, measure radiation, estimate dose, and
compare the results with gamma systems (backpack). The
first experiment was conducted under controlled laboratory
conditions. The second mapped natural and artificial radia-
tion fields in an outside environment. The final experiment
mapped complex radiation fields within an accelerator lab-
oratory. The results demonstrate that salt has considerable
potential for use in dosimetry below mGy and that measure-
ments can be conducted with portable OSL instruments. Fur-
thermore, the results of the first two experiments compared
well to theoretical doses and measurements with different
systems. The results confirmed that this approach can pro-
vide reliable dose estimates for radiological accidents. The
salt system has demonstrated its ability to map the spatial
boundaries of radiation fields, serving as a low cost radiation
mapping tool. Protocols must be instituted for testing and as-
sessment during exercises, taking into account variables such
as zeroing, ambient conditions, and the necessity for fading
adjustments. The studies of talc focused on the optimal con-
ditions for measuring the radiation-induced OSL signal using
the SUERC Portable OSL Reader. It also addressed the in-
herent complexities associated with geological residual sig-
nals observed in talc sourced from Luzenac Pharma’s pack-
ing line. This residual signal can be removed through ther-
mal treatment, specifically at 400 °C for 1 h, after which the
talc exhibits sufficient sensitivity to detect doses in the mGy
range through to the radiologically significant range of 0.5 to
3 Gy, making it a promising candidate for field-deployable
radiation assessment.

The fading data exhibit a complex decay pattern, suggest-
ing the presence of multiple trap depths, with an initial signal
loss of approximately 6 % within 24 h post-irradiation, esca-
lating to a substantial 65 % reduction of the original OSL
signal within 128 d at ambient temperature.

The work presented here has demonstrated that the novel
approach of using salt or talc with portable OSL systems is
capable of delivering dose estimates in the range from a few
UGy to several Gy in near real-time, complementing exist-
ing techniques. To optimize this approach, comprehensive
protocols should be developed for both testing exercises and
evaluations, which could lead to wider acceptance of these
approaches offering a robust, low-cost solution for rapid dose
assessment for both emergency response and environmental
dosimetry.
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Radiation dosimetry is the measurement of absorbed ra-
diation dose (Gy = Jkg~!). Estimation of dose in natural
minerals using luminescence emissions is an integral part of
luminescence dating. The upper limit of luminescence dat-
ing is limited to ~0.5Ma. This limit is because of satura-
tion of luminescence intensity with dose and depends on the
capacity of the traps (defect sites) inside the crystal to accu-
mulate charges produced during irradiation. The saturation
is mineral-dependent and found to differ for different miner-
als. Quartz and feldspar are two ubiquitous minerals that are
widely used in luminescence dating. The quest to increase
the datable range of luminescence dating has been long, and
many new traps (and their corresponding luminescence sig-
nals) in quartz and feldspar have been identified and probed
to increase the datable range. However, the probed signals
still face challenges in bridging the gap between laboratory
calibrations and naturally acquired doses.

The present thesis attempts to develop a method to esti-
mate high radiation doses (HRDs 2 1 kGy) by exploring new
minerals for high dose estimates and developing a better un-
derstanding of the luminescence mechanism in conventional
minerals (quartz and feldspar) in the high dose regime. This
thesis, for the first time, explores the luminescence character-
istics of jarosite, a hydroxyl sulphate of metal and iron, be-
cause of its importance as a direct indicator of paleo-aridity
(hence climate change) and its abundance and occurrence on
Mars. Essential dosimetry properties like identification of
traps, their thermal stability, bleaching, dose saturation, and
athermal fading are studied. Thermoluminescence (TL) glow
peaks appear around 100°C, 150°C, 300 °C, and 350 °C,
with emissions recorded in the spectral range of 325-700 nm.
Heating to 450 °C alters luminescence sensitivity without af-
fecting the shape of glow curves, a finding supported by
FTIR and CL-EDXS analyses. The 300 °C TL peak is ther-
mally stable over geological time periods, with a lifetime of
~0.3 million years (Ma) at 30 °C and ~3 Ma at 10 °C ambi-
ent temperature, indicating suitability for dating older events
in colder environments. Dose-response curves (DRCs) show
saturation dose ranges from 590 to 1600 Gy for various traps
probed by BSL, IRSL, pIRIR»;5 and TL. Based on a ter-
restrial dose rate of ~2mGya~! and fading considerations,
jarosite has the potential to date events up to ~800ka (con-
strained by the thermal stability to colder areas), while on
Mars, where the dose rate is ~65mGya~!, the dating limit
is approximately 25 ka.
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The multi-spectral studies are conducted to understand
the trapping, storage and recombination of charges in con-
ventional minerals (quartz and feldspar) at HRDs. Exper-
iments are conducted in the broad spectral window from
325-700nm and are consequently narrowed down. Re-
sults show that quartz TL saturates in 10-18kGy range,
whereas feldspar TL saturates around 1-5 kGy, the range be-
ing sample-dependent. Since quartz provides a significant
scope for estimating HRD, it is studied in detail in this thesis.
The dose-response and saturation characteristics in quartz
are found to be primarily controlled by the trapping cen-
tres rather than the recombination centres, with saturation
doses showing minimal spectral dependence. Bleachabil-
ity is found to be wavelength-dependent; longer-wavelength
emissions exhibit reduced bleaching efficiency. Standard
normalisation protocols, such as the zero or second glow
normalisation, become unreliable beyond ~1kGy, leading
to inconsistent sensitivity correction. Instead, normalisation
approaches based on sample mass/weight should be used.
These findings highlight the need for revised protocols at
HRDs. The thesis further re-investigates the Blue Stimu-
lated luminescence (BSL) from quartz at HRDs, which is
known to saturate at ~250 Gy, which is approximately 40
times less than the observed TL saturation. Results show that
BSL measured on multiple aliquots of the same sample and
compared by mass normalisation does not saturate as early as
seen in Single Aliquot Regeneration (SAR) protocols. HRDs
are better measured using Multiple Aliquot Additive Dose
(MAAD) protocols in combination with alternative normal-
isation. Signals like zero-glow peak, annealed BSL, and
annealed TL (blue emission) show reduced/negligible de-
pendence on regeneration dose for the test signal, making
them more suitable for constructing DRCs in the high-dose
regime. Dose response curves generated using these normal-
isation methods show saturation around 5.8 kGy.

The thesis further uses the proposed methodology for two
natural old geological settings: the Upper Shivaliks (~0.5—
5Ma) and the Charavathur formation (>2.5Ma). In natu-
ral high-dose contexts, such as Shivalik sediments, where
SAR-based curves show early saturation, the MAAD method
proves particularly effective and could estimate higher radi-
ation doses. In samples like those from Charavathur, where
a low dose rate was estimated, the samples acquired an equi-
librium between the trapping and detrapping due to thermal
effects. MAAD accounts more appropriately for natural dose
equilibrium, which cannot be explained by SAR. These find-
ings highlight the limitations of SAR at high doses and sug-
gests the use of MAAD protocols appropriately normalised
for accurate dose estimation in old geological settings. How-
ever, the estimated doses are accompanied by large errors
which need further investigation in the future.

A PDF of this thesis can be obtained by contacting the
author: malikasinghal97 @gmail.com.
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Conference Announcements: LED 2026

L=D...

AMMAN

18™ International Conference on Luminescence and Electron Spin Resonance Dating
(LED 2026)

6th-10th September 2026.

SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East), is inviting
you to participate in the 18th International Conference on Luminescence and Electron Spin Resonance
Dating (LED 2026).

The conference will take place at the Landmark Amman Hotel, Amman, Jordan (landmarkamman.com)
between 6™ and 10th September 2026.

The conference will be followed by an optional 2-day (11th-12th September 2026) archaeological field
trip that will bring the participants to Petra and Wadi Rum.

The conference aims to foster a meaningful academic exchange, and bring together students, early-
career scholars, and experienced researchers from around the world.

The research areas for conference presentations will cover the topics
e Basic physical processes

e Advances in methodology for equivalent dose estimation
e Advances in dose rate determination

e Instrumentation

e Applications in geosciences

e Applications in archaeology

e Modelling

e New applications

For further information about registration, abstract submission, visit our website for more information
and updates:
https://indico.sesame.org.jo/e/led2026

The website will be regularly updated.
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